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Introduction
The investment banking activity is about o�ering investment
products to its customers, mostly institutional investors (as-
set managers, hedge funds, insurances. . . ). Traditional assets,
such as stocks and bonds, are no more of main interest. In-
deed, investors are not satisfied with the risk-return profile
they o�er. This is why banks o�er « alternative » solution,
known as structured or exotic products. Structuration teams
keep designing new products, most of them becoming more
and more complex. It is a financial engineering challenge to
always o�ering specific products to customers who have very
specific needs.
From a financial modelling point of view, this activity does
bring a lot of questions, both theoretical and practical. Indeed,
once a bank has se�led a deal with one of its customers, it car-
ries a risky position on its portfolio. A risky position means
a position which value can evolve positively or negatively de-
pending on the market movements. Clearly, a bank cannot
a�ord its results to be driven by non-controlled events. The
first goal of financial modelling is to find models which are
capable of explaining and controlling the profits and losses
(P&L) of the bank. In order to reach that goal, traditional fi-
nancial mathematics focuses on the volatility of the assets.
Even if volatility is a core topic, some others clearly deserve
to be studied as well because they have significant impacts on
the P&L.
The goal of this note is to introduce these topics, their last
developments and to o�er some alternatives in terms of risk
modelling. This paper will only focus on the equity perime-
ter. First, we will explain the implied volatility dynamics issue.
Indeed, implied volatility is a fundamental market data that
bank cannot get continuously (for practical reasons). Banks
have to make assumptions about how it moves with under-
lyings. Then, we will focus on the forward price, and, a�er
explaining that it contains all the dri� information, see how
it can be used to simulate in the best way possible. Finally, we
will look at the critical topic of smoothing in finance. Because
financial problems are too complicated to be solved analyti-
cally, they are o�en solved with numerical techniques. But
those techniques do not bring « smooth » results (we will give
details about the true meaning of this notion). However, it is
important to keep in mind that quantitative finance does re-
quire smooth values. We will then present this problem and
some techniques to overcome it.

1 Implied volatility dynamics issue
The daily routine of an exotic trader during his risk manage-
ment activity can be described as follows:

• The trader plugs his implied volatility surface. Obvi-
ously, volatility cannot be plugged point by point. This
is why a parametric form is used to describe the smile
in most investment banks.

• From that moment on, models will be calibrated on that
surface, the trader can price and hedge consistently
with the market.

• When the market moves significantly, the trader re-
calibrates his parametric form onto the new market
smile.

Here is the problem: because calibrating takes time and
because it has to be done by a trader, it is not possible, for a
bank, to have, at all time, the implied volatility of the market.
Hence, between two calibrations, the trader will manage his
book with an outdated implied volatility surface. But what if
the spot moves a lot? It is unlikely that implied volatility will
not respond to that move. Actually, there is a high negative
correlation between implied volatility return and spot return.
This is why banks have tomake assumptions about how a spot
move a�ects implied volatility. In common literature, one can
find two extreme rules: sticky strike and sticky moneyness.
We shall introduce these two concepts briefly and then we
will present a new model.

1.1 Sticky Strike Rule

This is the easiest assumption one can do. When looking at
the smile in absolute strike, one simply assumes that it does
not change at all a�er a move of the spot price. Writing 0 the
initial time, and 1 a�er the spot has moved:

σ1(T ,K ) = σ0(T ,K )

It corresponds to the following graph:

The two curves are actually the same (hence the single
curve on the graph). Now, if one looks at the smile in percent-
age of the spot (or the forward), called moneyness, we obtain:

σ1(T , k%)
def
= σ1(T , k%xS1)

= σ0(T , k%xS1)

= σ0
✓
T , k%x

S1
S0
S0

◆

= σ0
✓
T , k

S1
S0
%
◆

It means that, looking at the smile in moneyness, it does
shi� horizontally a�er the move of the spot:
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Clearly, there is no obvious reason for the smile to behave
that way. It is merely a dynamics assumption.

1.2 Sticky Moneyness Rule
Whereas the previous model assumed the smile to be fixed
in absolute strike, this rule assumes the smile to be fixed in
moneyness. Mathematically, it comes down to the following
equation:

σ1(T , k%xS1) = σ0(T , k%xS0)

The smile expressed in moneyness thus behaves as fol-
lows:

On the contrary, looking at the smile in absolute strike
leads to:

σ1(T ,K ) = σ1
✓
T ,

K
S1
%
◆

= σ0
✓
T ,

K
S1
%
◆

= σ0
✓
T ,K

S0
S1

◆

This equation can be represented by the following graph:

Again, this dynamics rule is an assumption. Traders can
assume any of those two rules to manage their portfolios.
Even though in some market conditions, either sticky strike
or sticky moneyness rules seems to be appropriate, it is up
to the trader to decide which one to use. Besides, in reality,
there is not a pure sticky strike or moneyness, but something
in between. The model we suggest below does not assume
any dynamics, but simply try to replicate how the smile does
move with the spot.

1.3 Proposition of implied volatility dyna-
mics

Our purpose is to estimate by howmuch implied volatility re-
sponds to a move of the underlying. A very basic idea is to
represent it through a simple linear model:

dσt = ↵ + βdlnSt + ✏

Implied volatility is a surface. There is, a priori, no reason
for ↵ and β to be stable through this surface. This is why one
should also consider a surface for these parameters:

dσk,T
t = σk,T + βk,T dlnSt + ✏

Note that k is a relative strike. It is a percentage of the
forward. Besides, when dealing with regression problems, or
more generally learning problems, it performs much be�er
when data is normalized. Indeed, the fact that data is not of
the same order can bring noise to the model. Intuitively, vari-
ation of implied volatility will not be in the same order if the
spot is around 1€ or around 1000 €. We have tested the above
model with normalized Euro Stoxx 50 2018 data (i.e. average
removed and standard deviation divided). It gives the results
below.

One can see that the movements of the underlying clearly
seem to explain the moves of the implied volatility. Indeed,
74.36% of the implied variation is explained by the variation of
the underlying. However, is it possible to have a be�er model?

Linear regression is essentially a linear problem. The so-
lution is mostly the inverse of the matrix containing the data.
Computing an inverse matrix is be�er when the di�erent
columns are orthogonal, i.e. they give completely di�erent in-
formation. So, if we want to improve our model, we should try
to find a very orthogonal (understand independent) informa-
tion of the underlying. For instance, one could add the traded
volume. Indeed, it is consistent to say that the implied volatil-
ity depends on both the underlying move and the volume of

trade. Here, we will focus on the structure of the volatility
itself.

Indeed, implied volatility is not a single point, but an en-
tire surface. Hence, the way it moves should depend on the
shape of the surface. Imagine you have a very flat implied
volatility surface. That means investors believe that whatever
the spot is, implied volatility should be the same. But, if it
is skewed, then one should not expect the same behavior for
large and low underlying levels. This is why it could be inter-
esting to add the skew as an explanatory variable. We decide
to use the skew as information about the volatility structure.
Our model thus becomes:

dσk,T
t = ↵k,T + βk,T dlnSt + γk,T Skewk,T

t + ✏

Note that we could consider the skew around k. Regard-
ing this specific example, estimating this newmodel using the
same dataset as previously does not improve significantly the
explanatory power. So, we can exclude the skew around the
strike from the model (just keep in mind this feature could be
useful in some cases). Maybe, one should not only consider a
value around the strike, but a number that can represent the
entire surface. For example, adding convexity would seem a
good idea.

To sum up, the previous methodology has a huge advan-
tage which consists in not assuming any dynamics, but build-
ing a model which is consistent with what happens. But, if we
proceedwith this methodology, there is absolutely no guaran-
tee that the output surface will be arbitrage free. That means
there needs to be another analysis in order to be sure that the
arbitrage free property is achieved. A potential solution could
be to perform the same work, but over a parameterization of
a risk free surface. One could try to study how parameters
respond to an underlying move, knowing that the output sur-
face will be free of arbitrage by construction.

2 Simulating with the right dri� and
forward

In the investment banking world, pricing is about taking as
much information from themarket and use it in order to value
non-liquid products. That way, one can believe that the prod-
uct has been priced according to the market.

For instance, the risk neutral distribution of an underly-
ing at any point T in the future can be known: it is given by
vanilla prices. This is for that reason that building a volatility
model which fits vanilla prices is possible, we can use the Lo-
cal Volatility model to do so. Such a model can then be used
to price exotic options (even though the price it produces is
not perfect due to the unrealistic dynamics this model repre-
sents).

In the same manner, forward plays a central role. Indeed,
a fundamental risk free relation is:

FT
t =

St
B(t , T )

= EQT


ST
B(T , T )

|Ft
�

= EQT ⇥
ST |Ft

⇤
= EQT ⇥

SSt=xT

⇤ (1)

Where we successively used:

• Non arbitrage condition on the forward price

• Definition of the forward neutral probability QT

• B(T , T ) = 1 by definition of zero coupon

• Markovian property of EDS solution

Equation (1) tells us that FtT is nothing but the first order
moment of ST . Note that this is consistent with the fact that
practitioners see the forward price as the best estimate of the
spot at that date. This implies that, when simulating an un-
derlying, one should always make sure that, at any date, the
average of the realization is the forward price (which is given
by the market).

But how can we achieve this? To answer that question, let
us look back at Black and Scholes equation:

dSt
St

= rdt + σdWt (2)

) ST = S0e(r−
σ2
2 )T+σWT = S0erT e−

σ2
2 T+σWT (3)

The equation (2) can be spli�ed in two parts:
A deterministic one (a simple ODE):

dSt
St

= rdt

) ST = S0erT = FT
0

In other words, the forward is the solution to the deter-
ministic part. The forward contains all the information re-
garding the dri�. In particular, it enables us to avoid specify-
ing rates, repo and dividends. They are already in the forward.
This is a major point.

A pure stochastic one:

dSt
St

= σdWt

) ST = e−
σ2
2 T+σWT = XT

XT is called an exponential martingale. Note that, as a
martingale:

EQT

[XT ] = EQT

[X0] = EQT ⇥
e0
⇤
= 1

A particularity of equation (2) is the fact that its solution is
nothing but the product of the solution of the two di�erential
equations:

ST = FT
0 XT

Finally, we notice:

EQT

[ST ] = FT
0 E

QT

[XT ] = FT
0

We have just shown that Black & Scholes model meets the
fundamental condition given by (1). Now, let us move to any
volatility model we want. We know that, under that model,
the average should still be the forward. In order to achieve a
consistent simulation, one can simply do:

St = F t
0Xt (4)
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Clearly, there is no obvious reason for the smile to behave
that way. It is merely a dynamics assumption.

1.2 Sticky Moneyness Rule
Whereas the previous model assumed the smile to be fixed
in absolute strike, this rule assumes the smile to be fixed in
moneyness. Mathematically, it comes down to the following
equation:
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The smile expressed in moneyness thus behaves as fol-
lows:

On the contrary, looking at the smile in absolute strike
leads to:
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This equation can be represented by the following graph:

Again, this dynamics rule is an assumption. Traders can
assume any of those two rules to manage their portfolios.
Even though in some market conditions, either sticky strike
or sticky moneyness rules seems to be appropriate, it is up
to the trader to decide which one to use. Besides, in reality,
there is not a pure sticky strike or moneyness, but something
in between. The model we suggest below does not assume
any dynamics, but simply try to replicate how the smile does
move with the spot.

1.3 Proposition of implied volatility dyna-
mics

Our purpose is to estimate by howmuch implied volatility re-
sponds to a move of the underlying. A very basic idea is to
represent it through a simple linear model:

dσt = ↵ + βdlnSt + ✏

Implied volatility is a surface. There is, a priori, no reason
for ↵ and β to be stable through this surface. This is why one
should also consider a surface for these parameters:

dσk,T
t = σk,T + βk,T dlnSt + ✏

Note that k is a relative strike. It is a percentage of the
forward. Besides, when dealing with regression problems, or
more generally learning problems, it performs much be�er
when data is normalized. Indeed, the fact that data is not of
the same order can bring noise to the model. Intuitively, vari-
ation of implied volatility will not be in the same order if the
spot is around 1€ or around 1000 €. We have tested the above
model with normalized Euro Stoxx 50 2018 data (i.e. average
removed and standard deviation divided). It gives the results
below.

One can see that the movements of the underlying clearly
seem to explain the moves of the implied volatility. Indeed,
74.36% of the implied variation is explained by the variation of
the underlying. However, is it possible to have a be�er model?

Linear regression is essentially a linear problem. The so-
lution is mostly the inverse of the matrix containing the data.
Computing an inverse matrix is be�er when the di�erent
columns are orthogonal, i.e. they give completely di�erent in-
formation. So, if we want to improve our model, we should try
to find a very orthogonal (understand independent) informa-
tion of the underlying. For instance, one could add the traded
volume. Indeed, it is consistent to say that the implied volatil-
ity depends on both the underlying move and the volume of
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Where:

⇢ dXt
Xt

= σtdWt

X0 = 1

Proceeding like that will lead to paths where, on average,
the spot equals the forward, but the rest of the distribution
will depend on the volatility model. The following chart helps
us visualize what happens, there is a “forward path”, which
is the central one and the realization displays an oscillation
around it.

Note that, on that chart, t1 and t2 represent ex-div dates.
In the end, we have just proposed a di�usion scheme where,
instead of trying to model rates, repos and dividends, one can
simply multiply an exponential martingale by the current for-
ward. Proceeding like that will give the central view of the
market. A�erwards, practitioners can focus on modelling the
volatility with the level of complexity that suits their needs.
They will still be right on average, this is the most important
feature.

3 Smoothing in finance
Smoothing is the process by which one tries to lower the im-
pact of a discontinuity or irregular values. In finance, one is
particularly interested in smoothing prices and Greeks. There
are plenty ofmethods to reach that goal. Here, wewill present
the twomain techniques used on themarket. We shall discuss
their importance in practice.

3.1 Price smoothing through payo�
Intuitively, any financial product’s price is the price of its
replication, which means the price to build another portfolio
which behaves the same way as the initial financial product.
An exotic product is mainly (but not only) replicated by its un-
derlying(s). We could take a single underlying exotic product
as an example. It appears that the quantity of underlying one
should detain to replicate is the exotic’s delta. Let us note E()
the exotic price function (which does depend on the underly-
ing S). By definition:

Exotic0s_delta =
@E
@S

Like a lot of functions, this derivative does depend on S,
i.e. the level of the underlying. That means that when the un-

derlying moves, the trader has to adjust his position. This is
called dynamic hedging.

Now that we are aware of that, there is a simple mathe-
matical feature of the payo� that will tell how o�en a replicat-
ing portfolio should be adjusted: its convexity (or concavity).
Indeed, the more convex around a point a payo� is, the more
the delta increases/decreases, and so the more complicated it
is for a trader to manage. On the contrary, the less convex a
payo� is, the less the delta moves, and the easier it is for the
trader. Smoothing prices through payo� is about changing
the payo� to make it less convex. Note that this change must
be done in a conservative way (from the investment banking
perspective). If the bank sells the product, it should replace
the problematic payo� by a less convex but higher one. Of
course, if that new payo� is significantly higher than the first
one, it will not give a good price and and it is unlikely that the
costumer will accept it.

To illustrate that point, let us look at a simple example, a
digital option. Its payo� is given by:

f (ST ) = 1ST≥K

Because of the discontinuity around the strike, the price
does increase mainly around it. This is particularly the case
when Time to maturity or volatility is low. Below are charts of
the Time to maturity e�ect on prices and Greeks of a digital
option. It was done under a simple Black & Scholes model,
with an annualized volatility equal to 30%, K = 100 and T = 1:

Clearly, one can see that, around the strike, for short-term
maturity option, the risk management is not impossible, as
the trader is due to buy or sell a large amount of underlying
following a price change. The idea here is to replace f by g:

g(ST ) =
1
✏

(
(ST − (K − ✏))+ − (ST − K )+

)

Such a payo� actually has a name: it is a Call Spread.
Graphically, using ✏ = 10, one has:

Now, performing the same calculation will lead to the fol-
lowing charts:

We can notice that the shapes are globally the same. Yet,
the situation is di�erent, as now the trader will have more
time to adjust his delta. Jumps are not as sudden and signifi-
cant as in the previous case. Having to buy 100M€ of underly-
ing on the market is not the same thing as 70M€. Transaction
costs make the first situation (standard digital option) impos-
sible to handle.

Note that over replicatingwith a linear function is the sim-
plest idea one can have. In practice, other forms of payo�
smoothing can include: piecewise function, logistic function...

3.2 Greeks smoothing by calculation

Now that the payo�wasmodified, what if the trader still finds
his Greeks too volatile? Indeed, because exotic prices are com-
puted using Monte Carlo method, prices are not a regular
function of the di�erent risk factors, even if the payo� was
smoothed. This is mostly due to the noise within the Monte
Carlo method.

In practice, one can solve this problem quite easily. In-
deed, Greeks are computed with finite di�erence technique,
which simply consists in:

@E
@S

= lim
h7!0

E(S + h)− E(S − h)
2h

' E(S + ✏)− E(S − ✏)
2✏

In a theoretical world, one should take ✏ as small as pos-
sible. But, due to the Monte Carlo noise, this is clearly not
something we want. Indeed, taking small ✏ will take into ac-
count very small variation which has nothing to do with the
underlying variation, but only the numerical method itself.
Obviously, traders with experience recognize situation where
their deltas (and other Greeks) are not satisfactory. A com-
mon technique to get be�er results is thus to improve the ✏.
By doing so, one will clearly look at the direction of the price
curve, i.e. its derivative.

Below is a chart that compares delta with ✏ = 0.5 vs ✏ = 1
on the same digital option as previously, but priced with a
Monte Carlo (still Black Scholes model).
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Where:

⇢ dXt
Xt

= σtdWt

X0 = 1

Proceeding like that will lead to paths where, on average,
the spot equals the forward, but the rest of the distribution
will depend on the volatility model. The following chart helps
us visualize what happens, there is a “forward path”, which
is the central one and the realization displays an oscillation
around it.

Note that, on that chart, t1 and t2 represent ex-div dates.
In the end, we have just proposed a di�usion scheme where,
instead of trying to model rates, repos and dividends, one can
simply multiply an exponential martingale by the current for-
ward. Proceeding like that will give the central view of the
market. A�erwards, practitioners can focus on modelling the
volatility with the level of complexity that suits their needs.
They will still be right on average, this is the most important
feature.

3 Smoothing in finance
Smoothing is the process by which one tries to lower the im-
pact of a discontinuity or irregular values. In finance, one is
particularly interested in smoothing prices and Greeks. There
are plenty ofmethods to reach that goal. Here, wewill present
the twomain techniques used on themarket. We shall discuss
their importance in practice.

3.1 Price smoothing through payo�
Intuitively, any financial product’s price is the price of its
replication, which means the price to build another portfolio
which behaves the same way as the initial financial product.
An exotic product is mainly (but not only) replicated by its un-
derlying(s). We could take a single underlying exotic product
as an example. It appears that the quantity of underlying one
should detain to replicate is the exotic’s delta. Let us note E()
the exotic price function (which does depend on the underly-
ing S). By definition:

Exotic0s_delta =
@E
@S

Like a lot of functions, this derivative does depend on S,
i.e. the level of the underlying. That means that when the un-

derlying moves, the trader has to adjust his position. This is
called dynamic hedging.

Now that we are aware of that, there is a simple mathe-
matical feature of the payo� that will tell how o�en a replicat-
ing portfolio should be adjusted: its convexity (or concavity).
Indeed, the more convex around a point a payo� is, the more
the delta increases/decreases, and so the more complicated it
is for a trader to manage. On the contrary, the less convex a
payo� is, the less the delta moves, and the easier it is for the
trader. Smoothing prices through payo� is about changing
the payo� to make it less convex. Note that this change must
be done in a conservative way (from the investment banking
perspective). If the bank sells the product, it should replace
the problematic payo� by a less convex but higher one. Of
course, if that new payo� is significantly higher than the first
one, it will not give a good price and and it is unlikely that the
costumer will accept it.

To illustrate that point, let us look at a simple example, a
digital option. Its payo� is given by:

f (ST ) = 1ST≥K

Because of the discontinuity around the strike, the price
does increase mainly around it. This is particularly the case
when Time to maturity or volatility is low. Below are charts of
the Time to maturity e�ect on prices and Greeks of a digital
option. It was done under a simple Black & Scholes model,
with an annualized volatility equal to 30%, K = 100 and T = 1:
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smoothed. This is mostly due to the noise within the Monte
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something we want. Indeed, taking small ✏ will take into ac-
count very small variation which has nothing to do with the
underlying variation, but only the numerical method itself.
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their deltas (and other Greeks) are not satisfactory. A com-
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Even though the delta is still not perfectly smooth, it is an
improvement with regards to a smaller ✏.

Conclusion
In this paper, we have raised and discussed about three dif-
ferent major topics in equity modelling:

• Implied volatility dynamics problem

• The forward price and how to use it in the modelling
process

• Smoothing techniques and their key role

These three topics are capital as they have a major impact
on prices and on the bank’s business.

We have detailed and shown that using the forward when
simulating allows one to get the right average of the under-
lying at maturity. Even though one uses a wrong volatility
modelling, one can be sure to be right on average. This is a
major improvement.

Traders manage their position. Their main tools are
Greeks, which tell them by how much their portfolio will
change when the underlying parameters move. Because of
market impact and limits, they cannot a�ord to buy and sell
large quantities at all time. But structured products actually
display these features! Smoothing is an essential part of quan-
titative modelling and fundamental for a bank.

Finally, because of a finite storage capacity, banks have
to make choices. Their most crucial choice lies in the implied
volatility which is not available at all time. But if one wants
to price according to the market and provide prices with no
arbitrage, it is important to rely on the best implied volatility
dynamics as possible. In this study, we have proposed a new
one which seems to be a good step in modelling a realistic
dynamics.
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