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Introduction
Estimating the volatility of an asset is of the utmost impor-
tance in financial mathematics, insofar as volatility plays a
key role in almost every model: the assumption of a constant
volatility, used in the famous Black-Scholes formula, is too
simple to really take into account the realities of financial
markets; more elaborate approaches are therefore required.

Nonetheless volatility estimation is not as easy as it may
seem from a purely mathematical point of view. When us-
ing the widespread Itô modeling for the price of an asset, it
is well-known that the cumulative volatility can be estimated
thanks to the sum of squared returns over a given period of
time. Even though this approach turns out to be su�icient in
most cases, it may fail in certain contexts, for instance when
working with high-frequency data.

High-frequency volatility estimation deserves indeed a
specific treatment due to the peculiarities of what is called
the "market microstructure". In this paper, a�er se�ing forth a
few reminders regarding the common framework for volatility
estimation, we will focus on the di�iculties which arise when
dealing with high-frequency data. It is then necessary to find
new ways to estimate the high-frequency volatility of an as-
set. To solve this issue, we will present and implement several
estimators, from the least to the most precise.

1 From The Classic Modeling To The
Signature Plot Reality

First, we denote (St ) the price process of a security, and we
define the log price process Xt = ln(St ). We make the follow-
ing assumption on (Xt ):

Definition 1 (Itô Modeling)
The log price process (Xt ) is assumed to be an Itô process:

dXt = µtdt + σtdBt

where (Bt ) is a standard Brownian motion. The cumulative
volatility of our security over a time period [0, T ] is given by

∫ T

0
σ2
t dt

As of now, we consider that the upper bound of the time
interval, i.e. T , is known, so we only work on [0, T ]. Our pur-
pose is to estimate the cumulative volatility

∫ T
0 σ2

t dt .
Under the required assumptions, the theory of stochastic

processes states that [1]:

N−1∑
i=0

(Xti+1 − Xti

)2 N→∞−−−−→
∫ T

0
σ2
t dt

where the dates (ti)i=0..N define a grid G such that:

G = {0 = t0 < t1 < … < tN = T}

In our estimation procedure, the dates (ti) are the ones
where we observe a value for the process X . They are called
the sampling dates.

We know that the sum of the squared returns converges
to the cumulative volatility over [0, T ] when the sampling
frequency increases.

However this approach is a bit simplistic. If it works in
common cases, it is because the process X is not sampled too
frequently. Indeed, when using empirical data, we observe
that, when the sampling frequency is too high, the sum of the
squared returns, instead of converging toward the cumulative
volatility, increases. This behavior is only one of the many pe-
culiarities which appear when dealing with high-frequency
data. Such peculiarities are o�en referred to as the "stylized
facts" [2] of high-frequency.

In order to properly present this empirical phenomenon,
it is important to define what the signature plot is:

Definition 2 (Signature Plot)
If we denote (Xt ) a process, its signature plot on the interval
[0, T ] with step τ (T = N × τ ) is defined as:

VT (τ ) =
1
T

N−1∑
n=0

|X(n+1)τ − Xnτ |2

It is merely the realized volatility over a time period [0, T ], using
a step τ .

When using empirical data for the process (Xt ), if we draw
the signature plot by considering the function τ −→ VT (τ ), we
observe that the signature plot is a decreasing function of τ .
This is called the signature plot e�ect.

The consequence of this empirical reality is that the afore-
mentioned volatility estimator is not robust when working
with high-frequency data. Mathematically, this means that
the log return process is not a true semi-martingale in real life.

This phenomenon is due to what is called the "market
microstructure". The term "market microstructure" refers
to the phenomena which are observable only when work-
ing with high-frequency data, and which therefore challenge
low-frequency modelings.

A simple approach to deal with the market microstructure
consists in tweaking the modeling of the log return process.
Since real data cannot be viewed as a true semi-martingale,
we assume we actually observe a process (Yt )which is derived
from the true, invisible, process X :

Definition 3 (Additive Modeling)
The observed log price process is denoted (Yt ); it is made of two
components:

Yt = Xt + εt

(Xt ) is the true log price process, which is not visible, i.e. it is
not possible to observe the process (Xt ) at a given time. (εt ) is an
independent noise around the true returns. We have E [εt] = 0
and we denote E [εt] = ε2
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Such a modeling accounts for the signature plot e�ect. To
see that, let us define:

Definition 4 (�adratic Variation)
The quadratic variation of a process U, which is observed on a
given grid denoted H

H = {0 = h0 < h1 < … < hn = T}

is denoted [U,U]H, and is defined by:

[U,U]H =
n−1∑
k=0

(
Uhk+1 − Uhk

)2

Thanks to this definition, it is straightforward to define
what the quadratic variation between two processes U and V
is:

[U,V ]H =
n−1∑
k=0

(
Uhk+1 − Uhk

) (
Vhk+1 − Vhk

)

So, by assuming that the observed data are actually noisy,
we have:

[Y ,Y ]G = [X ,X]G + 2 [X , ε]G + [ε, ε]G

which leads to:

E([Y ,Y ]G |X ) = [X ,X]G + 2nε2

This equation shows that, when the sampling frequency
increases, meaning that n increases, the estimation of the
high-frequency volatility using the mere quadratic variation
of the observed data will not converge. The factor 2nε2 will
cause the estimated values to soar when the number of avail-
able data within [0, T ] becomes too important.

For the sake of precision and the reader’s interest, it is
even possible to prove that [3]:

1√
n

(
E([Y ,Y ]G − 2nε2

) L−−−→
n→∞

2
√

ξN (0, 1)

where ξ = E
(
ε4t
)
and N (0, 1) a standard normal law.

To illustrate this, we have implemented a simple case. We
consider that the upper bound for our time interval is T = 1.
Given m an integer, we define the grid Gm:

Gm =
{

k
2m

, k = 0..2m
}

This way we can assume that, whenm is big enough, we work
with high-frequency data. The process X is merely a Brown-
ian path multiplied by a constant value; to generate the ob-
served data Y at the dates given by the grid Gm:

Y k
2m

= X k
2m

+ ε k
2m

we only simulate independent normal variables: ε k
2m

∼=
N (0, 0.00025).

We then estimate the cumulative volatility over [0, 1]
thanks to [Y ,Y ]G

m

, for m from 0 to 24. Figure 1 displays the
estimated values for the cumulative volatility:

Figure 1: Cumulative volatility estimation as a function of m

We see that, when m is too small, the estimation is un-
precise due to the small amount of data. Then, when m in-
creases, the estimation converges towards the cumulative
value, in our case 4. But when the sampling frequency is too
high, above 20 in our case, the estimated value starts to in-
crease.

The purpose of this paper is to find a way to properly es-
timate the cumulative volatility when working with high fre-
quency data. We cannot consider the classic estimator based
on the quadratic variation because of the market microstruc-
ture, which can, as a first approximation, be assimilated to a
noise signal which impacts the observed data.

2 How To Devise A True And Un-
biased Estimator Of The High-
Frequency Volatility?

Since the classic estimator [Y ,Y ]G is no longer a reliable esti-
mator of the volatility in a high-frequency context, a first idea
consists in disregarding some of our observations in order to
work with lower-frequency data.

• The subsampled estimator

To do this, we consider a sub-grid Gs ⊂ G. If G contains
n elements, we denote ns the number of elements within Gs .
Of course ns < n. For instance the data contained in Gs are
sampled every five minutes, instead of every second in G.

It is then fairly intuitive to define the following "subsam-
pled" estimator.

2
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Definition 5 (Subsampled Estimator)
The subsampled estimator is defined as follows:

[Y ,Y ]G
s

So it is only the quadratic version computed on a subgrid of our
data.

It is important to keep in mind that the observed data are
still polluted by a noise process, whose purpose is to take into
account the market microstructure. Nonetheless the subsam-
pled estimator is be�er than the classic one insofar as it is
now as if we work with lower-frequency data.

Nonetheless it is pivotal to remark that this does notmean
that the subsampled estimator is without shortcomings. In-
deed, similarly to the results we have for the classic estimator,
it is possible to show [3] that:

[Y ,Y ]G
s L−−−→

n→∞

∫ T

0
σ2
t dt+2n

sε2+N (0, 1)

√
4nsξ +

2T
ns

∫ T

0
σ4
t dt

So, at low-frequency, we can assume that the subsampled
estimator is a good estimator, albeit imperfect, of the cumu-
lative volatility because ns compared to ε2 and ξ is such that
nsε2 and nsξ are almost equal to zero.

However the estimator is not very satisfactory inasmuch
as we only je�ison most of the available data. It would be
much be�er to use all the available data.

It is possible to do so while staying true to the philoso-
phy of the subsampled estimator. We devise a new estimator
based on both subsampling and averaging. We will refer to it
as the subsampled and averaged estimator.

• The subsampled and averaged estimator

Definition 6 (Subsampled and Averaged Estimator)
We divide the grid G into K subgrids:

G =
K⋃
k=1

Gk

such that Gk ∩ Gq = ∅ when k �= q. We write n̄ the average size
of the grids:

n̄ =
1
K

K∑
k=1

Card
(
Gk)

The subsampled and averaged estimator, denoted [Y ,Y ]avg , is
then defined as follows:

[Y ,Y ]avg =
1
K

K∑
k=1

[Y ,Y ]G
k

Let us assume that the data in G are sampled every sec-
ond. A simple way to define the subgrids of G consists in
sampling the data, for instance, every five minutes. The num-
ber of grids is then given by the number of seconds which are

contained within five minutes, i.e. K = 300.

The subsampled and averaged estimator improves on the
subsampled estimator insofar as it is based on all the data
which are available. Besides, it is possible to show that:

[Y ,Y ]avg L−−−→
n→∞

∫ T

0
σ2
t dt+2n̄ε

2+

√
4
n̄
K
E +

4T
3n̄

∫ T

0
σ4
t dtN (0, 1)

We see that, when using the subsampled and averaged
estimator, the cumulative volatility is no longer noised by a
factor proportionate to n, the total number of observations,
but by a factor proportionate to n̄, which is smaller by defini-
tion. Nonetheless this estimator is still biased; this leads us to
consider a fourth and final volatility estimator.

Indeed we would like to rule out the factor 2n̄ε2 which
appears with the subsampled and averaged estimator. This
can be done by combining the subsampled and averaged es-
timator and the classic one, whose bias factor is 2nε2.

• The unbiased subsampled and averaged estimator

Definition 7 (Unbiased Estimator)
The unbiased estimator, denoted [Y ,Y ]unb, of the cumulative
volatility is obtained by combining the subsampled and averaged
estimator and the classic estimator together:

[Y ,Y ]unb = [Y ,Y ]avg − n̄
N

[Y ,Y ]G

Once again, it is then possible to prove the following re-
sult regarding this final estimator: if K is chosen such that
K = cn

2
3

[Y ,Y ]unb ∼=
∫ T

0
σ2
t dt +

1

n
1
6

√
4Tc
3

∫ T

0
σ4
t dt +

8ε4

c2
N (0, 1)

3 Implementation Of The Final Esti-
mator On Simulated Data

To illustrate the advantages of the final estimator, it has been
implemented in the context of simulated data. In this section
we display our results.

Framework (Simulated Data)
First, we remind the reader that the process X is not visible in
real life. In our case, the process X is merely a Brownian motion
multiplied by the constant value 2. We simulate the process X .
We set T = 1, so we work on the time interval [0, 1].

Since X is only a Brownian motion, we can rewrite definition
1:

dXt = 2dBt

meaning that σt is a constant process whose value is equal to 2.
Thus the cumulative volatility is theoretically equal to:

∫ T

0
σ2
t dt =

∫ 1

0
22 = 4

3
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When it comes to the observed data Y , we assume we have
observations at the points k

2m , where m is equal to 21. So, with
our notations:

G =
{

k
2m

, k = 0..2m
}

To create the observed data Y at the points in G, we only
add a normal noise. For k in 0..2m:

Y k
2m

= X k
2m

+ ε k
2m

where the random variables ε k
2m

are just independent normal
variables, with mean 0 and standard deviation ε = 0.00025.

We simulated 100 di�erent paths, and each time we esti-
mated the cumulative volatility with both the classic and the
final estimator.

Figure 2 displays the 100 estimated values for the cumu-
lative volatility when using the first and naive estimator. We
see that the estimation is not satisfactory, since all the values
are within the interval [4.25, 4.28], whereas the cumulative
value is theoretically equal to 4. This illustrates the signature
plot e�ect. The average estimated value, computed on the
100 simulated paths, is equal to 4.2626152773485515.

In the first part of our paper, we mentioned that

E([Y ,Y ]G |X ) = [X ,X]G + 2nε2

With ε = 0.00025 and n = 221, it is easy to check that

2nε2 ≈ 0.26

which is very close to the distance between the average esti-
mated value and the theoretical one.

Figure 2: Estimated values for the cumulative volatility when
using the classic estimator

When it comes to the final estimator, the subsampling has
been carried out using 221−8 subgrids containing 28 points. In-
deed we used the following subgrids, for k ∈

[
0, 221−8 − 1

]
:

Gk =
{( q

221−8 + k
) 1
221

, q = 0 … 28 − 1
}

Figure 3 displays the 100 estimated values for the cumu-
lative volatility when using the unbiased subsampled and av-
eraged estimator. The estimation is much be�er, the values
being approximately centered around 4, illustrating that this
estimator is unbiased. If we compute the averaged estimated
value over the 100 paths, we find indeed 4.023208490333749,
which is much closer to 4.

Figure 3: Estimated values for the cumulative volatility when
using the unbiased subsampled and averaged estimator

Conclusion
When it comes to the practical implementation of mathemat-
ical results in finance, one should be particularly careful when
dealing with high-frequency data, otherwise one may face
some unexpected outcomes. This is due to the market mi-
crostructure. The peculiarities of the high-frequency world
are o�en referred to as the "stylized facts" of high-frequency.
In this paper we have mainly insisted on the signature plot
e�ect, which is probably the most famous of the various high-
frequency stylized facts.

One of the consequences of the signature plot e�ect is that
it is no longer possible to estimate the cumulative volatility of
an asset thanks to a mere quadratic variation. It is then im-
portant to develop a mathematical model which manage to
reproduce this empirical e�ect. One of the simplest models is
the additive one; it assumes that the true data are invisible,
and that the observer only sees a noisy signal. Within this
framework, it is possible to develop ever more precise estima-
tors in order to estimate the cumulative volatility.

We have purposefully kept our approach rather simple,
but there are several aspects which could lead to further in-
vestigation. For instance, even though the additive model is
fairly simple, it fails in perfectly modeling the signature plot
e�ect. Indeed, in reality we observe that, when the sam-
pling frequency increases, the signature plot increases and
converges. In the additive model, when the sampling fre-
quency increases, the signature plot diverges towards the in-
finity. Furthermore, when considering subsampling estima-
tors, it is also possible to optimize the subsampling param-
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eters, i.e. the number of subgrids we choose to consider, in
order to improve the quality of the estimator. All those ques-
tions could be addressed in order to be�er take into account
the singular reality of the high-frequency world.
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