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Introduction
The 2008 financial crisis has suggested to various financial

players to give a greater a�ention to risk and see how to man-
age it e�iciently. While a small number of banks are prepared
for the implied regulatory changes and are actively manag-
ing it, the complexity and cost of implementing the necessary
infrastructure remain a huge challenge for most financial in-
stitutions.

This shows that modeling the risk factors is a fundamen-
tal part of the risk management and it introduces changes on
the day-to-day pricing and hedging on transactions within
this market. This requires an e�ective and particularly fast
method for the numerical process used in pricing.

To overcome this issue, banks have developed a method-
ology based on the classic Monte Carlo method (MC), which
is very costly in terms of computational resources (in terms of
time and computational power). These resources grow larger
with the number of assets that are analyzed, each risk fac-
tor can require several thousands of simulated paths, increas-
ing the complexity of the computational process. As an al-
ternative to the usual computing methods, many banks have
decided to tackle the issue of Monte Carlo computing cost
by using GPUs instead of the usual architecture using only
CPUs. This allows the development of a parallel computing
framework which is ideal to estimate the parameters used in
the derivatives pricing model.

�asi-Monte Carlo (QMC) is also widely used because it
provides a be�er convergence rate. Unfortunately, in practice,
we see that the method gives less accurate results compared
to MC when dimension increases. Furthermore, it does not
provide a confidence interval.

In this note, we present Randomized �asi-Monte Carlo
(RQMC), considered as amidway betweenMCandQMC. The
aim of this new methodology of pricing is to improve the rate
of convergence of MC and provide a confidence interval.

It is a hybrid method which uses scenarios generated us-
ing MC to have a confidence interval and scenarios generated
using QMC to get an optimal rate of convergence.

The first two sections will give a formal presentation of
MC and QMC in a general framework, that is to say, the
variable of which we seek to compute the expectation could
be any financial asset or metric such as an option payo� or
a Value at risk. . . Then we will move to the main subject of
the article which is RQMC. Finally, we will illustrate the new
method by pricing arithmetic Asian options.

1 Monte CARLO
The basic principle of Monte Carlo is to use the Strong

Law of Large Numbers: if (Xk )k≥1 denotes a sequence of inde-
pendent realizations of an integrable random variable X (i.e.
identically distributed random variables) then:

Xn :=
∑n

k=1 Xk

n
→ mX = E[X] as n → ∞ almost surely

The error can be controlled thanks to the Central Limit
Theorem which says that: If X is square integrable then:

√
n(Xn − E[X]) → N(0,Var(X )) as n → ∞ in distribution

where Var(X) is the variance of X.
Therefore, the confidence interval at level α of the Monte

Carlo simulation is given by:

In =


Xn − qα

√
Vn

n
,Xn + qα

√
Vn

n




where qα is defined as P(mX ∈ In) ≈ P(N(0, 1) ≤ qα) = 1− α
2

and Vn is the empirical variance of the MC estimator.
The rate of convergence for MC is then O( 1√

n ).

2 �asi-Monte Carlo

In the rest of the article we will denote I = [0, 1]d , d is the
dimension of the random variable of interest. �asi-Monte
Carlo (QMC) is a deterministic alternative method to Monte
Carlo: the pseudo-random numbers used to generate random
variables inMC simulation are replaced by deterministic com-
putable sequences of I valued vectors whichmay speed up sig-
nificantly the rate of convergence. Such sequences are called
Low discrepancy sequences.

Next, we will define a uniformly distributed sequence and
a Low discrepancy sequence.

Definition 1: Uniformly distributed sequence

A sequence u = (un)n≥1 is uniformly distributed on I if for
every x = (x1, .., xd ) ∈ I , its Star discrepancy

D∗
n (u) := sup

x∈I

∣∣∣∣∣
1
n

n∑
k=1

1I(uk )−
d∏
i=1

xi
∣∣∣∣∣

satisfies D∗
n (u) → 0 as n → ∞

Definition 2: Low discrepancy sequence

A I valued sequence ε = (εn)n≥1 is a sequence with low
discrepancy if:

D∗
n (ε) = O(

log(n)d

n
) as n → ∞

So, when using QMC the rate of convergence is O( log(n)
d

n ).
For more details about low discrepancy sequences we re-

fer to [1].
Next, we will define the Koksma-Hlawka inequality that

controls the error when using QMC.
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Koksma-Hlawka Inequality
Let ε = (ε1, .., εn) be an n-tuple of I valued vectors and let

f : I → R be a function with finite variation (in the measure
sense). Then

∣∣∣∣∣
1
n

n∑
k=1

f (εk )− E[f (U)]

∣∣∣∣∣ ≤ V (f )D∗
n (ε)

where U is a uniform random variable and V (f ) is the Finite
Variation in the measure sense of f .

It’s sometimes di�icult to use such inequality as V (f ) is
not straightforward.

But if V (f ) is known the previous inequality could be very
useful, combined with the a�ractive rate of convergence, the
QMC method can be a strong alternative to classic MC espe-
cially in low dimension.

But a major drawback of QMC is that it doesn’t provide a
confidence interval.

3 Randomized�asi-Monte Carlo
The idea is to introduce some randomness in the QMC

method in order to produce a confidence interval. This ap-
proach also leads to a variance reduction compared to classic
Monte Carlo. We refer to [2] for details about pricing options
using RQMC.

We will introduce two methods of randomization: Shi�ed
low discrepancy sequence and Scrambled sequence methods.

Method 1: Shi�ed low discrepancy sequence
We consider the following estimator:

XNI =
1
NI

I∑
i=1

N∑
k=1

f ({Xi + εk})

instead of
1
N

N∑
k=1

f ({εk})

in QMC.
The Xi are independent copies of the uniform random vari-

able X generated as in classic MC. {.} is the fractional part.
In the following section we will show that the variables

({a + εk}) are e�ectively uniform. That is to say we will prove
that if (εk )k≥1 is a uniformly distributed sequence and a =
(a1, .., ad ) ∈ Rd , then ({a + εk})k≥1 is uniformly distributed.

Demonstration:
Wewill use theWeyl criterion, see [3] for details. We have

by such criterion that if (εk )k≥1 is uniformly distributed:

∀p ∈ Nd , p �= 0Nd
1
N

N∑
k=1

e2iπ(p|εk ) → as N → ∞

Now,

for p = (p1, .., pd ), a = (a1, .., ad ) ∈ Rd

1
N

∑N
k=1 e

2iπ(p|{a+εk}) = 1
N

∑N
k=1 e

2iπ
∑d

i=1 p
i ({ai}+{εik})

= e2iπ(p|{a}) 1N
∑N

k=1 e
2iπ(

∑d
i=1 p

iεik )

= e2iπ(p|{a}) 1N
∑N

k=1 e
2iπ(p|εk ) → 0 as N → ∞

Therefore, the same criterion implies that ({a + εk})k≥1 is uni-
formly distributed.

Method 2: Scrambled sequence
Briefly the idea is to generate:

1
N

N∑
k=1

f ({εk+T})

where (εn)n≥1 and is a low discrepancy sequence and T is a
discreet random variable defined over {1, …,N}. A research
activity would be to determine which choice of the distribu-
tion of T will reduce the bias of the estimator.

In our article, we chose to use Poisson distribution because
it is one of the most important discreet distributions and also
for its use in jump processes in finance.

For variance Analysis and confidence interval coverage we
will only focus on the first method of randomization.

Variance Analysis
The variance of the estimator is

1
I
Var

(
1
N

N∑
k=1

f ({U + εk})

)
=
σ2

I

this hybrid method should be compared to regular Monte
Carlo of size IN through their respective variances. It is clear
that we will observe a variance reduction if and only if

σ2

I
<

Var(f (U)
IN

i.e.

σ2 <
Var(f (U)

N
On the other hand:

∣∣∣∣∣
1
n

n∑
k=1

f (εk )− E[f (U)]

∣∣∣∣∣ ≤ V (f )D∗
n (ε)

Consequently, we can write:

σ2 = Var
(

1
N

∑N
k=1 f ({U + εk})

)

= E
[(

1
N

∑N
k=1 f ({U + εk})− E

[
1
N

∑N
k=1 f ({U + εk})

])2
]

= E
[(

1
N

∑N
k=1 f ({U + εk})− E [f (U)]

)2
]

≤ supu∈I

∣∣∣ 1n
∑N

k=1 f ({u + εk})− E [f (u)]
∣∣∣
2

≤ supu∈I V (fu)
2D∗

n (u)
2

where fu is the function defined as fu(v) = f ({u + v}).
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Therefore, using the upper bound of the star discrepancy
of the sequence ε = (εn)n≥1 there exists some constantCε such
that:

σ2 ≤ C2
ε

log(N)2d

N2 N ≥ 1

It is clear that randomized QMC provides a very significant
variance reduction for the same complexity. But if the dimen-
sion d increases one must have in mind that the variance can
be high.

4 Confidence interval
We will construct a confidence interval using the

Berry–Esseen theorem which specifies the error of approxi-
mation between the normal distribution and the true distri-
bution of the empirical mean Xn. See [4] for more details.

Briefly the theorem states that given that E[X] =
0, E[X 2] = σ2 > 0 and E[|X |3] = ρ < ∞ If we define Fn as the
cumulative distribution function of Xn

√
n

σ and Φ the cumula-
tive distribution function of the standard normal distribution,
then for all real x and non null integer n, there exists a positive
constant C such that:

|Fn(x)− Φ(x)| ≤ Cρ
σ3
√
n

Application to normal approximation
Consider the randomized quasi-Monte Carlo estimator

XNI =
1
NI

I∑
i=1

N∑
k=1

f ({Xi + εk})

and FNI The cumulative distribution function of XNI
√
NI

σ Then

|FNI(x)− Φ(x)| ≤ Cρ

σ3
√
NI

Define qα as P(N(0, 1) ≤ qα) = 1 − α
2 We have, using the

previous inequality:

1− α = P(−qα ≤ N(0, 1) ≤ qα)
= Φ(qα)− Φ(−qα)
≤ FNI(qα + Cρ

σ3
√
NI
)− FNI(−qα − Cρ

σ3
√
NI
)

= P(−qα − Cρ
σ3

√
NI

≤ XNI
√
NI

σ ≤ qα + Cρ
σ3

√
NI
)

Therefore, this provides the following confidence interval of
level at least α:

INI =

[
XNI − qα

√
σ2

N
− Cρ

σ2I
, XNI + qα

√
σ2

N
+
Cρ
σ2I

]

The size of the interval is bigger than that of classic MC so
it’s less accurate. But if we dynamically increase N (number
of �asi random simulation) and I (number of random sim-
ulation) the term Cρ

σ2I tends to zero and consequently we can
use the classic MC interval:

In =

[
Xn − qα

√
Vn

n
, Xn + qα

√
Vn

n

]

But the computation time will increase as we need to esti-
mate another moment andmake the product NI go to infinity.

5 Application to option pricing

We will apply the previous results to the pricing of an
Asian arithmetic call and Asian arithmetic put. We will con-
sider a geometric Brownian motion (Black-Scholes world) for
the underlying stochastic equation.

We will set the volatility to 0.1, the risk-free rate to 0.01,
the maturity to 1 year and the current price to 50. The value
of the Arithmetic Asian Call is:

E
[
max(

1
T

∫ T

0
S(t)dt − K , 0)e−rT

]

Since we do not have a closed formula for the price of the
Arithmetic Asian call, we can use classic MC with a very high
number of simulations (100 Millions) and a high number of
discretization (100) in the integral calculation to get a bench-
mark. In practice, we cannot a�ord to price in such costly
conditions. The benchmark results are:

K CALL Price PUT Price
45 5.99 0.01
50 1.84 0.62
55 0.17 3.70

where K is the strike of the option.

Testing methodology

The MC estimator is:

∑n
j=1 max

(∑m
i=1 S(

(2i−1)T
2m )j

m − K , 0
)

n

We used the midpoint method to compute the integral. We
run a classic MC with 1 million simulations.

In the following, NT is the number of time discretization.
We run 1000 QMC simulation using Van der Corput sequence
and 1000 MC simulation.

We use two methods to generate a standard normal vari-
able for the randomized �asi Monte Carlo methods: Box
Muller and the Inverse cumulative distribution function.

RQMC-1 refers to the first method of randomization and
RQMC-2 refers to the second one.

Numerical results

The results for the pricing of the Asian arithmetic options
are:
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Remarks
RQMC-1:

We notice that whether it’s a CALL or PUT the vari-
ance is reduced for this method relatively to classic MC. One
striking thing is that in all the cases, the inverse method re-
duces the variance more than Box-Muller method.

In terms of accuracy for the CALL Box muller is more ac-
curate for a 16 discretization whereas the inverse method be-
comes a li�le more accurate for the 64 discretization.

So, we conclude that the smaller values the more accurate
the method. For the put we cannot say which method of gen-
eration (inverse or Box Muller) is the best: Depending on the
strike one method outperforms the other and vice-versa.

As a result, this method gives prices that are close to the
previous method although it outperforms it in 3 cases out of 6
for the call and 5 cases out of 6 for the PUT when Box muller
is used.

RQMC-2:
We notice the for the CALL the first method of ran-

domization gives more accurate results in all the 6 cases.
Concerning the PUT, it’s be�er to use the second method

of randomization for out-of-the money and in-the-money op-
tions and use the first method of randomization for in-the-
money options to get the best relative accuracy.

Concerning computation time, the second method is a lit-
tle faster and it reduces the variance more than the previous
one.

6 Perspectives
In this section we expose some enhancements we could

do to compare the various method or to make them be�er.
For the first Randomized �asi Monte Carlo Method no

choice of the partition between the number of �asi random

simulations (N) and random simulations (I) we could try, for
a given number of simulation A, di�erent values of N and I
satisfying the condition NI=A. We could then find the opti-
mal partition. For the second Randomized�asi Monte Carlo
Method, we only tried the “Poisson” distribution. We could
try di�erent discrete distribution and see the optimal one in
terms of the size of the confidence interval, accuracy, variance
reduction and computation cost.

As a conclusion, depending on the function of which we
want to compute the expectation, the performances of the
various methods vary.

We need to study the payo� function and make a trade-
o� between the criterions (accuracy, variance reduction, com-
putation time and confidence interval) to choose one of the
methods.

Conclusion
In this paper, we have presented the Randomized �asi-

Monte Carlo and thus show that it is possible to innovate
and propose new modeling methods to facilitate the pricing
of derivatives.

We first presented classic Monte Carlo and �asi Monte
Carlo. Then the new RQMC has been illustrated in the case of
the Asian arithmetic option using a Geometric Brownian Mo-
tion for the underlying which is one of the most fundamental
processes in quantitative finance. We have also proposed two
methods of randomization.

The proposed method overcomes the drawback of QMC
by providing a confidence interval without compromising
variance reduction and the fast convergence rates given by
low discrepancy sequences.

Nevertheless, it remains to be seen how we can e�ectively
choose the partition of random and deterministic generation
so that the size of the confidence interval becomes smaller
and the rate of convergence remains fast.
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