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Introduction

Pricing American-style derivatives, i.e., contracts in which the
holder can choose the time of exercise during the life of the
derivative is still a challenge for banks and the complexity and
cost of implementing the necessary infrastructure remains a
tough task for most financial institutions. In order to comply
with regulatory requirements, institutions need to compute
supplementary metrics for risk management. These metrics,
and particularly the Credit valuation adjustment (CVA), have
a high cost in terms of computational resources as they need
the product to be valued in a time bucket form valuation date
to its maturity.

This becomes more challenging when it comes to pric-
ing American or Bermudan options because of the early ex-
ercise feature. This requires an e�ective and particularly fast
method for the implementation process.

There are traditional valuation methods such as la�ices
and tree-based techniques, that are used mainly in the low-
dimensional cases. But they are o�en impractical and inac-
curate when the dimension increases.

Several simulation-based methods have been proposed
to price options with early-exercise features, which combine
Monte Carlo paths generation and dynamic programming
techniques to determine optimal policies. We refer to [1] for
more details regarding this topic.

In this paper, we investigate the Stochastic Grid Bundling
Method (SGBM). This is a simulation-based dynamic pro-
gramming method that enhances the classic least square
Monte Carlo method (LSM) which has been developed by
Longsta� and Schwartz, see [2] for details. First it generates
paths of the underlying variable forward in time then uses
machine learning algorithms to create clusters of the values
at a given time so that the regression, used to compute the
continuation value, performs well on each cluster. The opti-
mal early-exercise policy is obtained by moving backward in
time.

SGBM belongs to the class of regression-based methods.
Another approach is based on approximating the transition
probabilities using either bundling, partitioning or quantiza-
tion of the state space.

Since, owing to the central limit theorem, the convergence
rate of methods based on simulation of the underlying state
vector converges in proportion to the square root of the num-
ber of paths generated and is independent of the dimension
of the problem, this makes simulation-based methods a�rac-
tive for valuing path-dependent and multi-asset derivatives.
But they can be complicated when the option has American-
style features. In such a situation, an optimal exercise policy
has to be determined via a dynamic programming approach.
The di�iculty then arises in combining the forward evolution
of simulation paths with the backward induction of dynamic
programming.

We will first give a formal presentation of the method
which is a mix of partitioning and local regression. Then we
will detail some of the important and most suited clustering
algorithms. The e�iciency of the method will then be em-
phasized in the case of CIR model. Finally, we will discuss

a di�erent approach to price Bermudan options which is a
quantization-based method.

1 Presentation of the Stochastic Grid
Bundling Method (SGBM)

In this section, we will make a formal presentation of SGBM.
The method is a hybrid of regression and bundling-based ap-
proaches, and uses regressed value functions, together with
bundling of the state space to approximate continuation val-
ues at di�erent time steps.

Let (Ω, F ,P) be a probability space,Ω is the set of all possi-
ble realizations of the stochastic variable Xt , t ∈ [0, T ], F is the
filtration generated by this variable and P is the risk-neutral
probability measure.

A Bermuda option is a type of exotic options contract that
can only be exercised on predetermined dates.

Let U(Xt ) be the payo� function of a Bermudan option on
the underlying Xt .

Suppose that the maturity of the option is T and exercise
times are {t1 < · · · < tM = T} and we want to value the op-
tion at time t0 = 0.
The value of the option at time T is simply:

VT = U(XT )

For some m such that 0 ≤ m ≤ M − 1, the conditional
continuation value C(tm,Xtm ) is given by:

C(tm,Xtm ) = DtmE[Vtm+1 (Xtm+1 )|Xtm]

where Dtm is the discount factor defined as

Dtm = e−
∫ tm+1
tm

rsds

rs is the instantaneous risk-free rate and E is the expectation
with respect to P.

The Bermudan option value at time tm is given by:

Vtm (Xtm ) = max (U(Xtm ),C(tm,Xtm )
)

We are seeking Vt0 (Xt0 ).
To this end, we need to compute the continuation value C(., .).

We first generate N risk neutral Monte Carlo paths and
then we construct the bundles. These are sub-sets that divide
the domain into disjoint sub-domains that have very similar
realized values of the risk-neutral samples. The next section
will detail some of the most popular bundling techniques.

Denote by Xtm some of theN realizations of the underlying
variable Xt at time tm. Now suppose we have the option value
Vtm+1 (Xtm+1 ) at time tm+1. For each bundle Bj we perform a local
regression to find the coe�icients β1, . . . ,βb of the regression
by minimizing the sum:

∑
Xtm+1∈Bj

(
Vtm+1 (Xtm+1 )−

b∑
k=0

βk × φk (Xtm+1 )

)2

where
φk (.), 0 ≤ k ≤ b
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are some basis functions.
Then the continuation function over each bundle Bj is es-

timated by:

Ĉj(tm,Xtm ) =
b∑

k=0

βk × ψk (Xtm )

with
ψk (Xtm ) = DtmE[φk (Xtm+1 )|Xtm].

For the paths in the bundle Bj , the option value at time tm
is then

Vtm (Xtm ) = max
(
U(Xtm ), Ĉj(tm,Xtm )

)

where U(.) is the payo� function.
We iterate the process for all the bundles at each exercise

date tm going backward in time from maturity tM until t1, the
first exercise date.

Once this is done, the option value Vt0 is therefore the av-
erage of the discounted cash flows at t1:

Vt0 = Dt1mean(Vt1 (Xt1 )).

If the basis functions are polynomial, that is to say we
have:

φk (X ) = Xk , 0 ≤ k ≤ b

and the characteristic function of the underlying process Xt is
known, analytic formulas can be obtained for:

ψk (.), 0 ≤ k ≤ b.

We first compute the associated characteristic function of
the underlying variable which is:

ΦX (y) = E[exp(iyXt )].

Consequently, we have:

E[Xk] =
1
ik
dkΦX (y)
dyk

|y = 0.

Therefore ψk can be derived by:

ψk (Xtm ) = DtmE[φk (Xtm+1 )|Xtm]
= DtmE[(Xtm+1 )

k |Xtm]

= Dtm
1
ik

dkΦX (y)
dyk |y = 0.

We refer to the appendix for CIR model moments calculation.
Classic LSM can be viewed as SGBM but with only one

bundle including all the paths. Compared to LSM, SGBMmay
improve the local approximation in regression because we use
disjoint sub-domains, and we can reduce the number of basis
functions which allows to reduce computation time.

LSM is e�icient for the computation of option value at
time zero only. It doesn’t give an accurate value of the op-
tion at future times (It overprices it) which is not desirable for
CVA calculation.

The following section aims at detailing some of the most
important bundling techniques.

2 Bundling techniques
SGBM employs bundling to approximate the conditional dis-
tribution using simulation. The aim of bundling in SGBM is
to cluster grid points based on proximity. There are many
bundling techniques, we will focus on the most important
ones.

All of them aims at bundling the stochastic grid points at
time tm into non-overlapping sets

Btm (1), . . . ,Btm (n)

where n is the number of bundles. We generally use clustering
algorithms for that aim.

In following subsections, we will consider two of them: K-
means and equal-number bundling partitioning.

K-means
Given a set of observations at time tm (Xtm (1), . . . ,Xtm (N))
where each observation is a d-dimensional real vector that, in
our case, represent the values of the underlying variable along
theN generated paths usingMonte Carlo, K-means clustering
aims at partitioning the N observations into K ≤ N sets

Btm = (Btm (1), . . . ,Btm (K ))

so as to minimize the within-cluster variance. Formally, the
objective is to find Btm that minimizes:

K∑
i=1

|Btm (i)|Var(Btm (i))

where |Btm (i)| denotes the cardinality of the set Btm (i) and
Var(.) its variance.

The algorithm works as follows:
-First, we determine the number of clusters we want to build
and eventually the maximum number of iterations.
-We initialize K points. Some of the various ways to do so are:
• Random generation of the first k centroids.
• Farthest selection: The first center is selected as a random
case from the dataset. The second center should be the far-
thest from the first center and so on. Each time the newly
added center should be the farthest from the centroid of the
set.
-We categorize each item to its closest center and we update
the center’s coordinates, which becomes the centroid of the
items categorized in that cluster so far.
-We repeat the process for a given number of iterations and
at the end, we have our clusters.

Equal-number bundling technique
The simpler way to create bundles is to choose the number of
bundles J, then rank the values of the paths at a given time and
putN/J values in each bundle starting from the smallest ones.
These bundles divide the domain into disjoint sub-domains.

The aim of the next section is to give an insight about a
di�erent approach to price Bermudan options. It is based on
transition probabilities approximation using quantization.
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3 Pricing Bermudan options with
�antization

The quantization provides an optimal spatial discretization of
a random variable by a discrete variable taking at most N val-
ues called quantizers. �antization is a deterministic alter-
native to Monte Carlo (MC) simulation, it can be more accu-
rate and faster than MC (at least for dimension≤ 5) for some
models and derivatives payo�s.

Let X ∈ Rd , be some random variable and x =
(x1, . . . , xN ) ∈ (Rd )N .
A Borel partition ((Ci(x))i=1,...,N of Rd is a Voronoi partition of
N-quantizer x , if for every i = 1, . . . ,N :

Ci(x) ⊂
{
ξ ∈ Rd , ||ξ − xi||2 ≤ min

i �=j
||ξ − xj||2

}

where ||.||2 is the Euclidean norm.
The N-�antizer of X is:

X̂ x =
N∑
i=1

xi1X∈Ci (x)

where the quantizers minimize:

||X − X̂ x ||2 =
(
E[ min

1≤i≤N
||X − xi||2

2
]
) 1

2

Given that X̂ x can be a risk factor or any underlying asset, the
expected value (for a payo� f ) can be approximated by:

E[f (X )] ≈ E[f (X̂ x )] =
N∑
i=1

f (xi)P(X ∈ Ci(x))

where P is the probability distribution function of the variable
X and E is the expectation with respect to P.

Now in order to price Bermudan options with quantiza-
tion, we need to do the following: We must first set the num-
ber of quantizers in each exercise date. Suppose we have Nk

quantizers for each date tk ∈ [0, T ]with 1 ≤ k ≤ n and tn = T
is the maturity of the Bermudan option. Let X̂k =

(
xk1 , …, x

k
Nk

)
be the quantized variable of Xt at t = tk .

We define by backward induction the function:



v̂n(xni ) = U(xni ), 1 ≤ i ≤ Nn

v̂k (xki ) = max
(
U(xki ),

∑Nk+1
j=1 πk+1

ij v̂k+1(xk+1J )
)
, 1 ≤ i ≤ Nk ,

1 ≤ k ≤ n− 1

The option value at maturity is then:

V̂T =
Nn∑
i=1

v̂n(xni )P(X ∈ Ci(X̂n))

and for intermediate times tk , the value is:

V̂tk =
Nk∑
i=1

v̂k (xki )P(X ∈ Ci(X̂k )) for 1 ≤ k ≤ n− 1

where πk+1
ij = P(X̂k+1 = xk+1j |X̂k = xki ) are the transition

probabilities.

These can be computed as:
We first define:
{

p̂ki = P(X̂k = xki ) 1 ≤ k ≤ n− 1, 1 ≤ i ≤ Nk

p̂kij = P(X̂k+1 = xk+1j , X̂k = xki ) 1 ≤ j ≤ Nk+1

then

πk+1
ij =

pkij
pki

The challenge is to compute such probabilities. If the underly-
ing variable has a density, the problem becomes easier. Other-
wisewe need to estimate the transition probabilities byMonte
Carlo. See [3] for more details regarding pricing Bermudan
options using quantization.

Conclusion
In this paper, we have discussed the pricing of Bermudan
options using the stochastic grid bundling method (SGBM)
which belongs to the regression-based methods. We pre-
sented its di�erence with the classic Least square Monte
Carlo then detailed some of the popular techniques used for
bundling. These are generally machine learning algorithms.
We also showed that SGBM can be very easy to implement
when the characteristic function of the underlying variable
has a closed formulae. This has been illustrated in the case
of the CIR process which is one of the most used processes in
practice especially in the modeling of interest rates dynamics.
We also introduced a method based on the approximation of
transition probabilities which is �antization.

Pricing Bermudan options still be among the greatest
practical challenges facing users of Monte Carlo methods in
the early-exercise derivatives pricing industry. The proposed
method is an alternative to the classic least square Monte
Carlo method (LSM) that is generally used for this purpose.

Compared to LSM, the approximate option values com-
puted using SGBM have lower numerical noise, not just at
the initial step but also at the intermediate time steps; which
makes it more accurate and faster for computations that re-
quire option values at intermediate time steps such as com-
puting future exposures within the CVA context.

Another favorable property of SGBM is that it can be used
to get fast approximations of the sensitivities or Greeks of the
option price which is essential for hedging and risk manage-
ment, but it typically requires substantially more computing
time than pricing the derivative.

Appendix
The CIR model specifies that the instantaneous interest rate
follows the below stochastic di�erential equation:

dXt = −λ(Xt − θ)dt + σ
√
XtdBt

where Bt is a Brownian Motion and the parameter λ corre-
sponds to the speed of adjustment, θ to the mean and σ to
volatility.
The standard deviation factor, σ

√
Xt avoids the possibility of

negative interest rates for all positive values of λ and θ. An
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interest rate of zero is also avoided if the following condition
is met:

2λθ ≥ σ2.

The aim of the following section is to find the characteris-
tic function of such process. We write u = iy and make
the assumption that the characteristic function of Xt is of
exponentially-a�ine form, that is to say, we will show that
for some T , we have:

E[exp(iyXT )] = E[exp(uXT )] = exp (A(T , u) + B(T , u)X0)

More precisely, we are seeking functions A(t , u) and B(t , u)
with initial conditions:

A(0, u) = 0 and B(0, u) = u,

such that:

Mt = f (t ,Xt ) = exp (A(T − t , u) + B(T − t , u)Xt )

is a martingale.
Once the above functions are found, we can write:

E[MT ] = M0.

By replacingMT andM0 by their expressions, the above equa-
tion becomes:

E[exp(uXT )] = exp (A(T , u) + B(T , u)X0) .

Now, we are going to demonstrate that.
Applying Ito’s formulae to the function f (t ,Xt ) yields:

df (t ,Xt )
f (t ,Xt )

= −
(
dAT−t

dt
+ Xt

dBT−t

dt

)
dt+BT−tdXt+

1
2
B2
T−tσ

2Xtdt

df (t ,Xt )
f (t ,Xt )

= −
(

dAT−t

dt + Xt
dBT−t

dt

)
dt − BT−tλ(Xt − θ)dt

+BT−tσ
√
XtdBt + 1

2B
2
T−tσ

2Xtdt

f (t ,Xt ) is a local martingale if the dri� coe�icient is null which
means:

(
dAT−t

dt
+ Xt

dBT−t

dt

)
= −BT−tλ(Xt − θ) +

1
2
B2
T−tσ

2Xt

Since the previous equation is valid for all t ≥ 0 and both
sides are a�ine functions of Xt , we get:




dAT−t

dt = λθBT−t

dBT−t

dt = −λBT−t + 1
2B

2
T−tσ

2

We need to solve the previous equations with initial condi-
tions:

A(0, u) = 0 and B(0, u) = u

The di�erential equation for B is called a Bernoulli equation
which is a special case of Riccati equation. It is a nonlinear
di�erential equation with known exact solution. We refer to
[4] for its solution. Once B is found, A equation is straight

forward.
Finally the solution is:




B(t , u) = ue−λt

1− σ
2λ u(1−e−λt )

A(t , u) = − 2λθ
σ2 log

(
1− σ2

2λu(1− e−λt )
)

Thus, the characteristic function E[exp(iyXt )] of the CIR pro-
cess is given by:

(
1− σ2

2λ
(1− e−λt )iy

)− 2λθ
σ2

exp
(

ue−λt

1− σ
2λ iy(1− e−λt )

X0

)
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