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Introduction
Machine Learning techniques are gaining currency in finance
nowadays; ever more strategies rely on Machine Learning
models such as neural networks to detect ever subtler sig-
nals. Nonetheless this rising popularity does not come with-
out any shortcoming, the most widespread one being the so-
called "overfi�ing", when models tend to learn by heart from
the data and are thus unable to face unknown data. In our
opinion, using Machine Learning algorithms in finance with-
out a deep understanding of their inner logic is highly risky:
promising initial results are o�en misleading, the real-life im-
plementation being much disappointing due to the lack of
comprehension of what is really happening.

In this paper we decide to focus on a specific category
of Machine Learning meta-algorithms: the ensemble meth-
ods. The ensemble methods are called meta-algorithms since
they provide di�erent ways of combining miscellaneous mod-
els of Machine Learning in order to build a stronger model.
Those techniques are well-known for being extremely power-
ful within many areas; however we believe that it is important
to understand what their advantages are from a mathemati-
cal point of view to make sure that they are used purposefully
when dealing with a financial Machine Learning problem.

First we set forth how ensemble methods work from a
general point of view. We then present the three sources of
errors in Machine Learning models before explaining what
the advantages of bagging over boosting are in finance, and
how to use e�iciently bagging.

1 From A Single Model To Ensemble
Methods: Bagging and Boosting

Machine Learning is mainly premised on predictive models.
Once devised, a model is then trained thanks to available
data; its purpose is to predict the output value, also known as
the outcome, corresponding to new input data. Formally we
can define a predictive model in the following manner:

Definition 1 (Predictive Model)
A predictive model is defined as an operatorM, based on meta-
parameters denoted M, and on parameters denoted P . It uses a
set of inputs, denoted �x ∈ Rm, to compute an output, denoted
O ∈ R, seen as the predicted value. We can write:

M (M; P ; •) : Rm → R
�x �→ O = M (M; P ;�x)

Thus the idea of a predictive model is only to predict a value
based on several features which are the inputs. If M is consid-
ered to be "the machine", the learning part consists in estimating
the parameters P that enable us to use the model. The metapa-
rameters M are chosen, and o�en optimized, by the user.

For instance, a neural network is a predictive model. The
shape of the neural network, i.e. the number of layers and

the number of neurons in each layer as well as the functions
within each neuron, forms the metaparameters M. The pa-
rameters of the neural network are the weights for each link
between two neurons from two consecutive layers. Those pa-
rameters are estimated thanks to a training set D: formally
P = P(D). As of now, since the training sets which are used
are of the utmost importance, we always write P(D) to clearly
mention which training set is used to find the parameters of
a given model.

The gist of ensemble methods is fairly simple: we com-
bine several weak models to produce a single output. As of
now and for the rest of this paper, the number of models is
denoted N .

The ensemble methods can be divided into two main sets:
the parallel methods, where the N models are independent,
and the sequential methods, where the N models are built
progressively.

• A Parallel Method: Bootstrap Aggregating

In this section, we set forth the bootstrap aggregat-
ing method, also known as "bagging", which is the most
widespread of the parallel methods [1]. As of now, we as-
sume a training set, denoted D, is at our disposal:

Definition 2 (Data Set)
A data set D is a set of couples of the following form

D = {(�xi , yi) ∈ Rm × R, 1 ≤ i ≤ n}

where n is the cardinal ofD. For the i-th element in the data set,
�xi ∈ Rm is called the vector of the m features, and yi is called
the output value.

To carry out the bagging, we construct N modelsMj with
1 ≤ j ≤ N . To do so, we consider a generic modelM(M; •; •),
i.e. a predictive model whose metaparameters are fixed, for
instance a neural network with a given shape. In order to get
N models, the generic model will be trained with N di�erent
training sets Dj :

Mj = M(M; P(Dj); •)

Thus, Mj is now a function which, for every input vector
�x ∈ Rm output a real value y = Mj(�x).

The N models are di�erent since they are not trained on
the same training set; it means that the set of parameters will
be di�erent; therefore we will have di�erent output values for
the same input vector of features �x .

The N training sets are created thanks to the data set D.
The size of the training sets is chosen by the user and denoted
K with K < n, otherwise the training sets would necessary
contain redundant information. The K elements of the train-
ing set Dj for 1 ≤ j ≤ N are sampled in D with replacement:
for 1 ≤ j ≤ N

Dj =
{(
�xu(j,k), yu(j,k

)
, 1 ≤ k ≤ K

}
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where u(j, k) is a uniform random variable in [1, n].

Once the N models Mj have been trained, they are com-
bined into the final model Mf . For instance, if we consider
a regression problem, meaning that the output value y does
not belong to a predetermined finite set of values:

Mf : Rm → R
�x �→ 1

N

∑N
j=1 Mj (�x)

If we consider a classification problem, meaning that the
output value y belongs to a finite set of values S, the output
value of the final model is determined by a vote of the N
modelsMj : the outcome which appears the most among the
N output values produced by the N models is the outcome of
the final model.

Such a model can then be tested on a test set of data as it
is usually done for every model of Machine Learning.

It is also worth noticing that there are many bagging ap-
proaches, which all derive from the general principle as pre-
sented above. Even though we do not delve into the details,
we can for instance mention the so-called "feature bagging",
where each one of the N models is trained using only a spe-
cific subset of features.

• A Sequential Method: Boosting

Sequential methods consist no longer in using a set of
N independent models, but instead a sequence of N models,
where the order of the models ma�ers:

{
M1, . . . ,MN}

︸ ︷︷ ︸
a mere set : no order

→
(
M1, . . . ,MN)
︸ ︷︷ ︸

a sequence

So we have to construct the sequence of the N models,
beginning with the first one, which will then sway how the
second one is defined, and so on and so forth. In the rest of
this sectionwe present some of the principal ideas of boosting.

First, as with bagging, we assume we have a training set
made of n elements and denoted D. If we choose to consider
a generic modelM (M; •; •), we can train a first model:

M1 = M (M; P(D); •)

For every element within D we can compute M1 (�xi) and
compare it to the outcome yi .

To devise the second modelM2, we are going to train the
generic model M (M; •; •) on a new training set D1: the new
training set derives from D. It contains K < n elements, as
will all the subsequent training sets.

We a�ribute to each elementwithinD aweight depending
on how far yi is from M1 (�xi). The more important the error,
the higher the weight associated with an element. We then
use those weights to randomly sampleD in order to generate
the new training set D1.

M2 = M (M; P(D1); •)

The process is then exactly similar. Thanks to the error of
the second model, we can compute for each element withinD
a new weight. Those weights are used to create a new train-
ing set: we sample D using the new weights to get D2, which
will then be used to train modelM3 and so on.

It is then possible to define the final model Mf as a
weighted sum of the N models Mj , where the weight as-
sociated with a given model is derived from the error of this
model on the data.

We have only presented the main ideas of boosting; the
simplest implementation of those guidelines is probably the
AdaBoost algorithm [2].

2 The Three Errors Of A Machine
Learning Model

A Machine Learning model can su�er from three sources of
error: the bias, the variance and the noise. It is important
to understand what lies behind those words in order to un-
derstand why and how ensemble methods can prove to be
helpful in finance.

The bias is the error spawned by unrealistic assumptions.
When the bias is particularly important, it means that the
model fails to recognize the important relations between the
features and the outputs. The model is said to be underfi�ed
when such a case occurs.

Figure 1 displays amodel with an important bias. The dots
represent the training data, which obviously do not exhibit a
linear relation. If we assume that there is a linear relationship
between the features and the outcomes, such a model clearly
founders to recognize any relation between the former and
the la�er.

Figure 1: Underfi�ed model

The variance stems from the sensitivity to tiny changes
in the training set. When variance is too high, the model is
overfi�ed on the training set: there happens a "learning-by-
heart" situation. This explains why even a small change in the
training set can lead to widely di�erent predictions.
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Figure 2 displays an overfi�ed model: instead of finding
a robust relationship between the features and the outcomes,
the model only replicates what it has learned on the training
set.

Figure 2: Overfi�ed model

The third source of error in a Machine Learning model is
the noise, which is the error caused by the variance of the
observed values, due, for instance, to measurement errors.
This is the irreducible error.

From a mathematical point of view, those three types of
errors can be apprehended in the following manner. We as-
sume we have at our disposal a training set D made of n ob-
servations. We also assume there exists an unknown function
f such that:

y = f (�x)

where y is a generic outcome and �x a vector of features.
Since our training set exhibits some noise, we assume that,
for 1 ≤ i ≤ n:

yi = f (�xi) + εi

ε is noise: it represents the fact that the available data do not
perfectly reproduce the function f we would like to estimate.
It is pre�y natural to assume that it is independent from the
feature x and that E [ε] = 0.

Thanks to our training set, we estimate a function f̂ that
best fits the unknown function f in the sense that it makes
the variance of the estimation error minimal.

E
[(

y − f̂ (x)
)2
]
= E

[
(f (x)− f̂ (x) + ε)2

]

= E
[(

f (x)− f̂ (x)
)2

+ ε2 + 2ε
(
f (x)− f̂ (x)

)]

= E
[{

f̂ (x)− E
[
f̂ (x)

]
+ E

[
f̂ (x)

]
− f (x)

}2
+ ε2

]

+ 2E [ε]E
[
f (x)− f̂ (x)

]

Using the above-mentioned assumptions regarding ε, the
second term in the last equality is zero.

E
[(

y − f̂ (x)
)2
]

= E
[
ε2
]
+ E

[(
f̂ (x)− E

[
f̂ (x)

])2
]

+ 2E
[(

f̂ (x)− E
[
f̂ (x)

])(
E
[
f̂ (x)

]
− f (x)

)]

+E
[(

E
[
f̂ (x)

]
− f (x)

)2
]

In the above computations, x is a mere constant; the random-
ness is carried by f̂ , which is built thanks to the training set,
whose components can be seen as random variables. So, in

the last term,
(
E
[
f̂ (x)

]
− f (x)

)2
is a constant. Besides:

E



(
f̂ (x)− E

[
f̂ (x)

])(
E
[
f̂ (x)

]
− f (x)

)
︸ ︷︷ ︸

constant




= c0 E
[(

f̂ (x)− E
[
f̂ (x)

])]
= 0

Thus we can write:

E
[(

y − f̂ (x)
)2
]

=
(
E
[
f̂ (x)

]
− f (x)

)2

︸ ︷︷ ︸
bias

+ var
{
f̂ (x)

}
︸ ︷︷ ︸

variance

+E
[
ε2
]

︸ ︷︷ ︸
noise

It is important that the reader bears in mind that the ran-
domness in the above calculations is carried by the estimated
function f̂ : f̂ depends on the elements within the training set,
and those elements can be seen as random variables. We draw
new variables by measuring the features and the associated
outcomes. We can draw a parallel with what is done to esti-
mate the cumulative distribution function of an unknown ran-
dom variable X when we have n independent drawings of the
variable X : {X1, . . . ,Xn}. The cumulative distribution func-
tion can be estimated by:

F̂ (t) =
1
n

n∑
i=1

1 (Xi ≤ t)

So, for a given t , F̂ (t) can be seen as a random variable depend-
ing on n iid random variables denoted Xi . The philosophy is
the same when we estimate the function f in the above cal-
culations.

3 Why Is It Be�er To Rely On Bag-
ging In Finance?

Bagging is a technique which significantly reduces the vari-
ance of a model. To see that, let us assume we consider a
regression problem. We have performed the bagging with N
models. So for a fixed vector of features �x , we have N estima-
tions of its outcome:

Mj (�x)

and the final estimation is given by:

1
N

N∑
i=1

Mi (�x)
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This last quantity plays the role of f̂ (�x). So we compute
its variance:

var

{
1
N

N∑
i=1

Mi (�x)

}
=

1
N2

N∑
i=1

N∑
j=1

cov
(
Mi (�x) ,Mj (�x)

)

As of now, for the sake of clarity, we denote σij =
cov

(
Mi (�x) ,Mj (�x)

)
and σ2

i = var
(
Mi (�x)

)
.

var

{
1
N

N∑
i=1

Mi (�x)

}
=

1
N2

N∑
i=1


∑

j �=i

σij + σ2
i




We denote σ̄2 the average variance of a single model:

σ̄2 :=
1
N

N∑
i=1

σ2
i

We would like to compare var
{

1
N

∑N
i=1 Mj (�x)

}
, which is the

variance of the bagging estimator, with σ̄2, which is the ex-
pected variance when using a single model.

var

{
1
N

N∑
i=1

Mi (�x)

}
=
σ̄2

N
+

1
N2

N∑
i=1

∑
j �=i

σij

We also define ρ̄ the average correlation between the N pre-
dictions of the N models:

σ̄2ρ̄︸︷︷︸
average covariance

:=
1

N(N − 1)

N∑
i=1

∑
j �=i

σij

Thus:

var

{
1
N

N∑
i=1

Mi (�x)

}
= σ̄2

(
1 + (N − 1)ρ̄

N

)

= σ̄2
(
ρ̄ +

1− ρ̄

N

)

The above equation shows that bagging is e�ective
to reduce the variance when ρ̄ < 1; if ρ̄ → 1, then
var

{
1
N

∑N
i=1 Mi (�x)

}
→ σ̄2. Therefore we see it is impor-

tant to produce training samples which are as independent
as possible in order to reduce ρ̄. In our first section, we have
set forth the simplest way of implementing the bagging: the
N training sets are obtained by sampling uniformly the ini-
tial set D with replacement. Other techniques exist, which
are particularly suited when dealing with financial data, for
instance the so-called sequential bootstrapping.

• Sequential Bootstrapping

The adjective "sequential" is a bit dangerous in this con-
text: it does not mean that the bagging will be turned into
some sort of sequential ensemble method. Sequential boot-
strapping only means that each training set Di , used to train
the model Mi , is constructed in a sequential manner: once
a first observations has been added to Di , instead of merely

replacing it in D before drawing uniformly the second obser-
vation which will join Di , the way this second observation is
chosen will depend on the first observation. Then the third
observation will depend on the first two ones, and so on.

The sequential bootstrapping is particularly suited to fi-
nancial problems insofar it is a method which enables to take
into account the particularities of financial data [3] [4], no-
tably that the observations are made on a given time period.
Let us start with our data set:

D = {(�xi , yi) ∈ Rm × R, 1 ≤ i ≤ n}

In finance, it is important to bear in mind that the obser-
vations are made thanks to given times t within a given stint,
denoted [0, T ]. If we consider a single element of our data set,
(�xi , yi), the features for the i-th element are computed thanks
to observations within a time period

[
ti,0, ti,1

]
. For instance, if

�x is of size 2, the first component could be the average of the
last ten daily returns, and the second component could be the
historical volatility over those last ten days.

In this particular case, every t in [0, T ] corresponds to a
given day; if the i-th element corresponds to a day ti in [0, T ],
then �xi is computed thanks to the observations of the price
for days ti − 10, . . . , ti , so ti,0 = ti − 10 and ti,1 = ti .

In order to perform the sequential bootstrapping, for each
element, indexed by i, within the data set and each time t
such that 1 ≤ t ≤ T , we define:

1i,t :=
{

1 if
[
ti,0, ti,1

]
∩ [t − 1, t] �= ∅

0 otherwise

So 1i,t aims at identifying when an overlap occurs : for the i-th
element within the data set and a time t in our time horizon,
if there is an overlap between the stint on which the features
are computed and the time window defined by t and the pre-
vious time t − 1, 1i,t is worth one, zero otherwise.

Thanks to this framework, we can now present how a
training set Di is built before training the i-th model of our
bagging. We start with:

Di = ∅

The first element which will join Di is drawn uniformly in
D: each element in D has the same weight 1

n . We denote
Xi1 = (�xi1 , yi1

)
the first element uniformly drawn in D:

Di ← Di ∪ {Xi1}

For the second draw, we would like to reduce the proba-
bility of drawing an element Xj which overlaps with Xi1 , i.e.[
tj,0, tj,1

]
∩
[
ti1,0, ti1,1

]
�= ∅.

IfDi already contains κ elements, here is howwe draw the
κ+1-th element. To carry out the κ+1 drawing, we define the
uniqueness of the element j for time t : 1 ≤ j ≤ n, 1 ≤ t ≤ T

uκ+1t ,j =
1t ,j

1 +
∑

k:Xk∈Di
1t ,k

4

It is then possible to average the uniqueness over the time
period:

ūκ+1j =

∑T
t=1 u

κ+1
t ,j∑T

t=1 1t ,j
This leads us to the newweights associatedwith each element
within D:

pκ+1j =
ūκ+1j∑n
k=1 ū

κ+1
k

Using those weights, we can now draw a new element within
D: we denote it Xiκ+1 :

Di ← Di ∪ {Xiκ+1}

The main advantage of such a sampling method is that
the training samples we obtain to train the N models are
much closer to iid samples than the ones we obtain with a
uniform sampling with replacement. This helps to reduce the
average correlation ρ̄ between the outcomes produced by the
N models, meaning that the bagging is be�er at reducing the
variance of the model.

So far we have mainly insisted on the interest of bagging;
in particular we have shown how it is possible to adapt the
common bagging in order to deal with financial data. What
about boosting?

We do not delve into technical details when it comes to
boosting since boosting is less legitimate in finance: boost-
ing is good at correcting both bias and variance, nonetheless
correcting bias comes at the cost of greater risk of overfi�ing.

In financial Machine Learning, there is nothing easier
than to overfit a model: bagging is then a much more pow-
erful tool in finance than boosting.

Conclusion
Ensemble methods are powerful tools in Machine Learning
inasmuch as they can transform a set of weak learners into
a stronger one. Those methods can be divided into two cate-
gories: the parallel methods and the sequential methods.

Due to its advantages, bagging, which is the most com-
mon of the parallel methods, is be�er suited to financial prob-
lems: in finance overfi�ing is a real plague, which can lead to
disastrous results. Bagging is be�er at decreasing the over-
fi�ing of a model, whereas boosting, the most common tech-
nique in the field of sequential techniques, is be�er at pre-
venting the underfi�ing.

Nonetheless, this does not mean that bagging should be
implemented in finance without a preliminary reflection. In-
deed financial data, which are time dependent, exhibit strong
characteristics; they cannot be assimilated to iid data, as it is
commonly admi�ed in Machine Learning. In this paper, we
have set forth how sequential bootstrapping works. Machine
Learning tools are not mathematical recipes which can be au-
tomatically in various situations; they demand a real com-
prehension of their inner logic. Therefore this paper shows
how to tweak the common bagging technique into a financial
bagging, which can prove to be very helpful when applied to
financial data.
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