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Introduction
When it comes to asset allocation, the mathematical frame-
work introduced by Henri Markowitz [1] is still ubiquitous
and widely used: the allocation question can be seen as
mathematical problem of optimization under constraints. The
main conclusion which can be drawn from this work is that
diversification plays a significant role to improve the perfor-
mance of a portfolio, while reducing its risk. From a math-
ematical point of view, if there exist several formulations of
the optimization problem, they all share one commonality: a
quadratic optimizer is necessary in order to estimate the op-
timal solution. Markowitz himself devised a new algorithm,
called the Critical Line Algorithm (CLA), to solve such opti-
mization problems.

However, in real life, the CLA is very unstable, insofar as
the optimal solutions it reaches are not stable: a small di�er-
ence in the input can lead to huge di�erences in the portfolio
which is ultimately allocated. This is particularly the case in
Markowitz’s approach since the expected returns plays a sig-
nificant role: we try to find the best trade-o� between the ex-
pected return of the overall portfolio and its risk. It is highly
di�icult to forecast the returns of an asset, and this explains
why new methods were required to allocate wealth among
several assets.

Since returns are di�icult to estimate, some authors de-
cided to disregard the expected returns to focus only the risk
of the portfolio. Risk-parity portfolio construction epitomized
this new paradigm [2]. However, once again, the mathemat-
ical solutions of optimization problems based only on risk
are highly unstable because of the role the covariance ma-
trix plays in the optimization algorithm. This matrix must
be inverted, and such a process is very unstable, especially
when the assets are highly correlated. This is precisely the
case where diversification is the most needed.

In this paper we set forth a new way of allocating wealth
among assets, based on Machine Learning and Graph The-
ory. Its purpose is to circumvent the numerical instabilities of
the traditional quadratic approaches, whether they are based
on mean-variance or only on risk. A�er explaining why the
traditional quadratic approaches are intrinsically flawed, we
present a new Machine Learning-based approach as well as
an implementation of this approach.

1 From The Flaws Of Traditional
�adratic Optimizers To Graph
Theory

Wehave alreadymentioned whyMarkowitz’s approach is un-
stable when implemented in real life: it is extremely di�icult
to estimate the expected returns of an asset with su�icient
accuracy. The CLA can then reach very di�erent solutions
when a small change occurs in the input. The idea of disre-
garding returns to focus only on risk, albeit quite interest-
ing, is nonetheless not su�icient to avoid numerical instabili-
ties. Indeed, the covariance matrix plays a significant role in
quadratic optimizer, especially in finance insofar as it enables

to compute the risk of a given portfolio. Indeed quadratic
programming methods require the inversion of this matrix,
which must be supposed to be positive-definite.

If the covariance matrix is very simple, for instance merely
diagonal, there is no di�iculty in inverting it. When thematrix
becomes more complex, for instance when the assets display
many correlation features in finance, it turns out that invert-
ing the covariance matrix becomes a very unstable process
[3]. A small change in the estimation of the correlations can
lead, once again, to very di�erent portfolios. It then required
even more data to estimate the correlations with the utmost
accuracy: for a matrix of size N , at least 1

2N(N + 1) indepen-
dent and identically distributed (IID) observations are needed
to make sure that the estimated covariance matrix is not sin-
gular. If N = 50, this means that at least 5 years of daily IID
are required: it is very unlikely that the correlation structures
remain invariant over such a long time frame.

Those mathematical questions explain why it has been
possible, over long periods of time, to beat mean-variance
portfolios and risk-parity portfolios with simple portfolios,
such as equally-weighted portfolios [4].

In order to address the limitations of an approach based
on the inversion of the covariance matrix, it is necessary to
take a look at how our data are represented. The traditional
approaches rely heavily on linear algebra. The return series
can be seen as the vectors of a vector space. Within such a
representation, every vector can be eligible to play the role
of another. The vectors can be viewed as a fully connected
graph, there is no hierarchy among the vectors. This com-
plexity partially explains why inverting the covariance matrix
is unstable.

Furthermore, this no-hierarchy approach is not in line
with popular wisdom. When an investor desires to build a
diversified portfolio, first he is going to consider the various
asset classes: stocks, bonds, real estate etc. Then, among each
asset class, he is going to consider some sub-categories: of-
fice real estate, residential real estate etc. Stocks for instance
can be classified depending on their liquidity, size and region.
This means that some assets are equivalent and can be seen
as similar, whereas others are not. If the investor decides to
invest a fraction of his/her wealth in a large publicly traded
company in the banking sector, it is similar to invest either in
BNP Paribas or in Société Générale, but this is not equivalent
to investing in a small private Asian bank.

So investment is based on hierarchy, and the lack of hi-
erarchy within traditional quadratic approaches explains the
instability: the weights can vary in all possible directions. It
would much be�er to make sure that our data, instead of be-
ing seen as a fully connected graph, are represented with a
kind a tree structure.
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Figure 1: Tree structure

In the rest of this paper, we set forth a new method for
asset allocation, called Hierarchical Risk Parity. This method
is based only on the covariance-correlation matrix, this is why
its name refers to "risk-parity", but it does not require the
brutal inversion of the covariance matrix. Instead it makes
the most of the hierarchical structure within the data. This
new method is made of three steps: tree clustering, quasi-
diagonalization and recursive bisection.

2 Tree Clustering: When An Asset Is
Not Necessarily Similar To Another

As of now, we consider N assets, denoted Xi with i = 1 . . .N ,
whose returns are observed over T periods of time, for
t = 1 . . . T . Generally, we consider the daily returns for each
asset: rit is the daily return between day t − 1 and day t for
asset Xi .

With those data, it is possible to compute the correlation
matrix C, of size N × N , thanks to the common correlation
estimator:

ρ
(
Xi ,Xj

)
= ρi,j =

1
T

∑T
t=1

(
rit − r̄ i

)(
rjt − r̄ j

)
√

1
T

∑T
t=1

(
rit − r̄ i

)2√ 1
T

∑T
t=1

(
rjt − r̄ j

)2

with r̄ i = 1
T

∑T
t=1 r

i
t . C =

(
ρi,j

)
1≤i,j≤N

Thanks to the correlation matrix C, we can define a dis-
tance between two assets Xi and Xj :

d
(
Xi ,Xj

)
=

√
1
2
(1− ρi,j)

Each asset Xi can be seen as a vector of size T , i.e. the vec-
tor of its returns. The distance d is then a true mathemat-
ical distance: d

(
X ,Y

)
≥ 0, d

(
X ,Y

)
= 0 ⇔ X = Y and

d
(
X ,Y

)
≤ d

(
X ,Z

)
+ d

(
Z ,Y

)
.

It is now possible to define a new matrix of size N × N , a
distance matrix D: D =

(
di,j

)
.

If we consider a numerical example in dimension 3 and if
the correlation matrix is equal to:

C =




1 −0.003036 0.010026
−0.003036 1 0.008572
0.010026 0.008572 1




the distance matrix is equal to

D =




0 0.708179 0.703553
0.708179 0 0.704070
0.703553 0.008572 0




Each asset Xi can be assimilated to the i − th column of
matrix D: the asset Xi is no longer defined by its return series,
but thanks to the distances between Xi itself and all the other
assets Xj . Those quantities exactly correspond to the i − th
column ofD. As of now, we use notations Xi andDi for asset i.

We then compute the Euclidian distance between two of
the columns of D:

d̃i,j = d̃
(
Di ,Dj

)
= dE

(
Di ,Dj

)
=

√√√√
N∑
k=1

(
dk,i − dk,j

)2

Therefore we can now define a third N × N matrix D̃ by:
D̃ =

(
d̃i,j

)
. So the element (i, j) of matrix D̃ measures the dis-

tance between asset Xi and Xj , but this distance includes in-
formation for the entire correlationmatrixC, whereas ρi,j only
included information from the two assets Xi and Xj . With our
numerical example:

D̃ =




0 1.21903 0.99498
1.21903 0 0.704137
0.99498 0.704137 0




Once the distance matrix D̃ has been computed, it is pos-
sible to start clustering together the assets of our universe. To
do so, we start by finding the pair of assets

(
i�, j�

)
such that

(
i�, j�

)
= argmin

i �=j
{d̃i,j}

So, with our example, we see that
(
i�, j�

)
=

(
2, 3

)
. It

means that assets X2 and X3 are so close that they can ac-
tually be considered to be similar: they form the first cluster
cl
(
1
)
=
(
2, 3

)
.

Once a cluster has been identified, we can compute the
distance between every asset Xi and this cluster: for 1 ≤ i ≤
N :

ui,cl(1) = min
j∈cl(1)

{d̃i,j}

This defines a vector �u ∈ RN . Using our numerical example
we see that:

�u =



0.99498

0
0




We then append vector �u to matrix D̃ in the following
manner in order to get a new matrixM of size (N +1)× (N +1):

M =
(
D̃ �u
�ut 0

)

︸ ︷︷ ︸
N+1
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M is actually still a distance matrix: appending �u is equiva-
lent to considering a new asset within our universe, which is
cluster cl(1). The last column ofM gives the distance between
all the assets of the universe, X1, X2, . . . , XN and cl(1) to the
cluster cl(1).

Nonetheless, insofar as Xi� and Xj� are already contained
in cluster cl(1), there is no interest in continuing to consider
them in the distance matrix. Thus we can update the distance
matrix D̃ by removing lines and columns i� and j�.

D̃ ← (mi,j)1≤i,j≤N+1, and i �=i� ,i �=j� ,j �=i� ,j �=j�

With our numerical example, since cl(1) =
(
2, 3

)
, this

means that D̃, once updated, is equal to:

D̃ =




0 • • 0.99498
• • • •
• • • •

0.99498 • • 0


 =

(
0 0.99498

0.99498 0

)

Once updated, D̃ contains the distance between the as-
sets Xi , i �= i� and i �= j� and cluster cl(1).

We apply the same process to the newmatrix D̃ in order to
identify a second cluster cl(2), and we then update once again
D̃ and so on and so forth until D̃ is of size 2× 2. At this stage,
we have already identified N − 2 clusters, cl(1), cl(2), . . . ,
cl(N − 2): we create a final cluster, cl(N − 1), which contains
the last two assets corresponding to the last two columns of D̃.

In our example, this means that our final cluster is equal
to cl(2) =

(
1, cl(1)

)
. It is important to notice that cl(1) is now

seen as a proper asset, even though it is already a cluster of
two other assets.

For each cluster, it is possible to define the number of orig-
inal items it contains. If the two elements in the cluster are
original assets Xi with 1 ≤ i ≤ N , then the number of original
items contained by the cluster cl is:

R(cl) = 2

If the cluster cl contains one original asset and another clus-
ter, denoted cla, then:

R(cl) = 1 + R(cla)

And, if a cluster is made of two other clusters cla and clb:

R(cl) = R(cla) + R(clb)

We necessarily have R(cl(N − 1)) = N .

3 The Shake-Up Of The Correlation
Matrix: The �asi-Diagonalization
Step

The purpose of this step is to reorganize the rows and columns
of the correlation matrix in order to corral the assets which

are similar. This will transform the correlation matrix into
a quasi-diagonal matrix where the largest values are placed
near the diagonal.

The process is fairly simple: each cluster cl(k) for 1 ≤ k ≤
N − 1 is made of two elements, either another cluster or one
of the original assets. For the rest of this section, we denote
those two elements cl(k)(i) with i = 1, 2. We start by consid-
ering and empty vector V =

[]
and the last cluster, cl(N − 1).

We initialize V in the following manner:

V =
[
cl(N − 1)(1), cl(N − 1)(2)

]

Then, we apply the same process to each element of V . If
an element of V is an original asset, it is not replaced, but if
it is a cluster, we replace it by the two elements it contains.
Since R(cl(N − 1)) = N , we are certain that, at the end, V
will contain all the original items, but they will appear in a
new order. This is the order we use to rewrite the correlation
matrix.

We develop in the rest of this section a numerical exam-
ple which exemplifies the quasi-diagonalization step. We con-
sider ten assets (N = 10), which will be referred to with their
index: asset 1, asset 2, . . . , asset 10. We work with simulated
data: we generate daily returns for T = 10000 days, and we
add a correlation factor among our observations when gener-
ating the data.

Figure 2 displays the heat map of the original correlation
matrix. The color varies from purple, for the lowest values in
the correlation matrix, to yellow, for the highest values. In
this representation, it is worth noticing that the correlation
matrix has been rotated: for instance ρ1,1 lies at the bo�om-
le� of the matrix. This explains why the "yellow" diagonal
goes from bo�om-le� to top-right.

Figure 2: Heat map of the original correlation matrix

If we perform the clustering step, we get the following
clusters:

• cl(1) = (4,9)

3
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• cl(2) = (2,10)

• cl(3) = (6, cl(2))

• cl(4) = (7, cl(3))

• cl(5) = (8, cl(4))

• cl(6) = (1, 3)

• cl(7) = (5, cl(6))

• cl(8) = (cl(1), cl(7))

• cl(9) = (cl(5), cl(8))

This gives us the following reordering rule:

V =
[
8, 7, 6, 2, 10, 4, 9, 5, 1, 3

]

We can now plot the heat map of the correlation matrix
once the rows and columns have been reordered. This is Fig-
ure 3. Now, the yellow parts of the matrix are all concentrated
close to the diagonal.

Figure 3: Heat map of the original correlation matrix

4 Allocation Through Recursive Bi-
section

This final step is premised on the fact that the inverse-
variance allocation is optimal for a diagonal matrix. If
we consider the following optimization problem with V =(
vi,j

)
1≤i,j≤N

a covariance matrix

min
�w∈RN

�wtV �w

with the constraint �wt�1 = 1, the optimal solution is given by:

�w� =
V−1�1
�1tV−1�1

If the matrix V is diagonal, there is no need to compute the
inverse of V : for 1 ≤ n ≤ N

wn =
1
vn,n∑n
k=1

1
vk,k

We can also notice that, when N = 2:

w1 = 1− v1,1
v1,1 + v2,2︸ ︷︷ ︸

w2

All the above results will influence thewaywe perform the
allocation thanks to the quasi-diagonalized correlation ma-
trix. Indeed here is how we perform the recursive bisection.

4.1 Initialization of the recursive bisection
The initialization is fairly simple. We initialize L a list of lists
with:

L = {L0}

where L0 = V , the reordering vector. It is important to notice
that, for the rest of the recursive bisection, the order of the
elements within L is preserved.

To all assets, we assign the same initial weight: wn = 1 for
1 ≤ n ≤ N . A�er the initialization step, we have only one
element in L, denoted L0, and Card

(
L0
)
= N .

If we use the numerical example at step 2, we have:

L = {{8, 7, 6, 2, 10, 4, 9, 5, 1, 3}}

4.2 Iteration of the recursive bisection
First, we set the stopping conditions: if, for all element Li ∈ L,
we have Card

(
Li
)
= 1, then we stop the process.

Then, for each element Li ∈ L such that card
(
Li
)
> 1, we

bisect it into two subsets:

Li = L1i ∪ L2i

with Card
(
L1i
)
=
[
1
2Card

(
Li
)]
, while preserving the order of

the elements: so L1i contains the first elements of Li , whereas
L2i contains the last elements. What we do actually is only
spli�ing Li between its first and second halves.

With our numerical example, we have:

L10 = {8, 7, 6, 2, 10}

L20 = {4, 9, 5, 1, 3}

Then, for each subset Lji , we define the covariance ma-
trix Vj

i of the assets which are present in Lji . Thanks to the
quasi-diagonalization step, this means that those two covari-
ance matrices will also be quasi-diagonal.

Indeed, if we reorganize the covariance matrix thanks to
the reordering vector, the two covariance matrices we have to
consider for L10 and L20 are merely the top-le� block and the
bo�om-right block if we split the reordered covariance matrix
into four equal square blocks.

Since Vj
i is quasi-diagonal, we can assimilate it to a diago-

nal matrix by considering actually the matrix Dj
i = Diag

(
Vj
i

)
:
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Dj
i is a diagonal matrix, whose diagonal is the same as Vj

i .

We can now solve the same optimization problem as men-
tioned at the beginning of this section with V = Dj

i . So the
optimal solution can be wri�en:

�wj
i =

(
Dj
i

)−1�1

tr
((
Dj
i

)−1)

We then compute the "optimal variance" for the two sub-
sets Lji : W

j
i =

(
�wj
i

)t
V j
i �w

j
i .

Those optimal variances allow us to compute a split fac-
tor αi which will be applied to our weights. Here, we use the
above-mentioned relation in the case of two assets:

w1 = 1− v1,1
v1,1 + v2,2

In this simple case, v1,1 is the variance of the first asset, and
v2,2 the variance of the second asset. If we consider that our
two subsets Lji can be seen as "clustered" assets, we can adapt
the formula with the optimal variances:

αi = 1− W 1
i

W 1
i +W 2

i

αi is the allocation factor which should be applied to the first
"clustered asset", i.e. to all the assets which are present in L1i ,
whereas 1−αi must be applied to the assets which are present
in L2i .

So for n such that n ∈ L1i , we update the weight:

wn ← wn × αi

On the contrary, if n is such that n ∈ L2i :

wn ← wn × (1− αi)

We then replace in the general list L the element Li by its
two subsets L1i and L2i . So now:

L = { . . . , L1i , L
2
i︸ ︷︷ ︸

previously Li

, . . . }

and we continue the bisection.

Once the bisection stops, this gives us the weights wn for
each of the original item. For instance, with our numerical ex-
ample, we get the followingweights for the ten original assets:
w1 = 0.196686, w2 = 0.028694, w3 = 0.19668, w4 = 0.099523,
w5 = 0.197634, w6 = 0.052846, w7 = 0.054229, w8 = 0.054119,
w9 = 0.092757 and w10 = 0.026843.

Conclusion
In this paper, we have addressed some of the shortcomings
of the traditional asset allocation mathematical framework
thanks to Machine Learning, especially Graph Theory. In-
deed, as powerful as it is, Markowitz’s original work is nu-
merically flawed due to the necessity to forecast the returns of

the assets of the universe, before implementing a traditional
quadratic optimizers. Such optimizers, since they rely on the
inversion of a covariance matrix, are quite unstable when the
covariance matrix exhibits lots of correlation between the as-
sets. Since the estimation of the expected returns is highly
unstable, the optimal portfolio itself will be highly dependent
on the quality of the estimations.

This also explains why alternative approaches, such as
risk-parity, which deliberately rule out the expected returns,
are unstable as well, even though they are less unstable than
Markowitz’s original one.

The true issue lies in the way the data are represented.
In traditional quadratic optimizers, every asset can be a sub-
stitute for any other asset. In real life, this is obviously not
the case. Instability is mainly due to the lack of hierarchical
structure within the data.

This can be addressed thanks to hierarchical risk parity.
This approach consists indeed in structuring the data in clus-
ters, before implementing the allocation. We can then take
advantage of the data restructuring to avoid many of the
flaws that are inherent of the traditional quadratic optimizers
when it comes to asset allocation.
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