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Introduction

Finance relies heavily on numerical data, and this ex-
plains why mathematical and statistical approaches are so
widespread in finance. Nonetheless numerical data in finance
display lots of peculiarities insofar as they are mainly time-
dependent. Therefore many classical statistical approaches
may fail when directly implemented within a financial frame-
work. The current development of the sub-field of Machine
Learning called "financial Machine Learning" is partially due
to the di�iculties that may arise when dealing with time-
dependent data.

In this paper we choose not to focus on the earmarks of
financial Machine Learning, but instead on another issue re-
garding financial data: the "asynchronicity" of observations.
When coping with only one underlying, the concept of "asyn-
chronicity" is irrelevant: the observations are made at di�er-
ent points on the time line. This dates define a first time ref-
erence. A second underlying, with its own observations made
at other dates, is necessary to define a second time reference,
and then to introduce the idea of asynchronicity. If the two
time references do not match, it means that the observations
are non-synchronous. We also write "asynchronous" in the
rest of this paper. This is of the utmost importance of finance
inasmuch as data are time-dependent: if the second underly-
ing is observed at a time t2j which is between two observation
times of the first underlying, t1i and t

1
i+1, the observation made

at t2j is of a very di�erent kind compared to the observations
made at t1i and t1i+1: the observation made at t2j contains more
information than the one made at t1i , and less than the one
made at t1i+1. Since financial mathematics rely heavily on the
information which is contained in the numerical data up to
the present date, it seems pre�y unwise to mix up data com-
ing from two di�erent time references.

Nonetheless asynchronicity remains one of the crude real-
ities of financial data, whereas synchronicity is a theoretical
fantasy. Therefore it ma�ers to have a clear mathematical
framework to deal with such data. In this paper we focus
on the question of the covariance estimation between two
asynchronous underlyings: a�er showing that too simple ap-
proaches to handle the covariance estimation fails, we will
set forth an estimation procedure of the realized covariance
between the two underlyings which is both consistent and
unbiased

1 A Simple Approach To Deal With
Asynchronous Data

In this first part, we set forth a simple approach to deal with
asynchronous data when it comes to estimating the realized
covariance between two underlyings.

Let us define the following mathematical framework: we

consider two Ito processes denoted P1 and P2:
{

dP1
t = µ1

t dt + σ
1
t dW

1
t

dP2
t = µ2

t dt + σ
2
t dW

2
t

whereW 1 andW 2 are two Brownian motions on a probability
space (Ω,F ,P). The correlation between those two Brownian
motions is a deterministic function denoted ρt , meaning that:

d < W 1,W 2 >t= ρtdt

We assume we work on a time period [0, T ]. Our purpose
is to estimate the realized covariance between the two pro-
cesses P1 and P2 on [0, T ]. If we denote θ this quantity, then

θ =
∫ T

0
σ1
t σ

2
t ρtdt

The theoretical results [1] regarding Ito processes posit
that, if we consider a given grid of times Gn = {t0, t1, . . . , tn}
such that

0 = t0 < t1 < · · · < tn = T

then the following quantity

n−1∑
i=0

(
P1
ti+1 − P1

ti

) (
P2
ti+1 − P2

ti

)

converges in probability towards θ when

sup
0≤i≤n−1

|ti+1 − ti|
n→∞−−−→ 0

This theoretical result relies on the assumption that the
two processes P1 and P2 are observed at synchronous times,
but this is not always the case in real life situations.

As of now, we assume that several observations of the two
processes within the time period [0, T ] are available, but those
observations are not necessarily synchronous. If we denote
m1 the number of observations for the process P1, the obser-
vations times for this process are:

0 ≤ T 1
0 < T 1

1 < · · · < T 1
m1

Likewise, m2 indicates the number of observation times for
the process P2, and those times are denoted T 2

i for 0 ≤ i ≤ m2.

It is possible to devise a first estimator of the realized co-
variance between P1 and P2, which will be referred to as the
"previous tick" estimator, using those asynchronous data. To
do so, we first define two processes Q1 and Q2 on the time
period [0, T ] as follows: for t ∈ [0, T ], we find the two con-
secutive observation times such that

Tk
i ≤ t < Tk

i+1

and then we define:
Qk

t = Pk
Tk
i

This definition only means that the two processes Q1 and
Q2 are actually constant piecewise processes, created thanks
to the observations of P1 and P2 respectively.

It is then fairly natural to define a discretization step h for
the time period [0, T ] such that T = mh with m ∈ N and to
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consider the following estimator for the realized covariance
between P1 and P2:

Vh =
m−1∑
i=0

(
Q1

(i+1)h − Q1
ih

) (
Q2

(i+1)h − Q2
ih

)

This approach may seem rather elegant due to its sim-
plicity; sadly it fails when it comes to properly estimating the
covariance. We display in the following section a numerical
implementation of this estimator on simulated data.

2 The Failure Of The Simple Ap-
proach: The Epps E�ect

We show in this section that the previous tick estimator of
the realized covariance fails: when the discretization step h
converges towards 0, this estimator, instead of converging to-
wards the realized covariance θ, converges towards 0.

Besides our implementation will also illustrate the fact
that the previous tick estimator is constantly biased, even for
higher discretization steps.

2.1 Definition of the two processes
For our implementation, we assume that the two processes P1

and P2 are merely proportional to Brownian motions:
{

P1
t = σ1W 1

t
P2
t = σ2W 2

t

with σ1 = 0.1, σ2 = 0.5, and the correlation between the two
Brownian motions W 1 and W 2:

d < W 1,W 2 >t= ρdt

with ρ = 0.5.

The time window chosen for our implementation is T =
100. All those values mean that the realized covariance is
equal to:

θ =
∫ T

0
σ1σ2ρdt = 100× 0.1× 0.5× 0.5 = 2.5

2.2 Simulation of the asynchronous times
and simulation of the observations

To generate the two sets of observation times, we consider
a Poisson process P(λ) with λ = 0.05. By simulating twice
such a Poisson process, this provides us with two set of times
between 0 and T . Each set of times represents the observation
times for one of our two processes P1 and P2. The times Tk

i
are now known in our implementation.

It is then possible to simulate the two processes P1 and P2,
which are basically two correlated Brownian motions multi-
plied by a given constant, at the observation times.

Once the observations of P1 and P2 are generated, it is
then fairly straightforward to implement the previous esti-
mator Vh for several values of the discretization step h.

2.3 Results of the previous tick estimation

Figure 1 displays the estimation of the realized covariance on
[0, T ] for several values of h, from 1.0 to close to 0.

Figure 1: Estimation of the realized covariance using the pre-
vious tick estimator

This implementation exemplifies two important phenom-
ena. First, when we use high-frequency data, i.e. when h → 0,
the estimation of the covariance converges towards 0. This ef-
fect is known as the Epps e�ect [2]. The estimator is no longer
performing with high-frequency data.

Besides we observe that, for lower frequencies, the previ-
ous tick estimator appears to be biased. This is another of its
shortcomings we would like to correct.

In the following section, we present another estimator for
the realized covariance with asynchronous data which is both
consistent and unbiased.

3 The Consistent And Unbiased Esti-
mator Of The Realized Covariance

The framework is exactly the same as above: we wish to es-
timate the realized covariance between two processes P1 and
P2, which are observed at asynchronous times Tk

i .

The observations times define two partitions of the time
window

[
0, T

[
, if we assume that T 1

0 = T 2
0 = 0 and T 1

m1
=

T 2
m2

= T . Those are the only two supplementary assumptions
we make. The first partition is denoted π1 and is given by the
observation times of the process P1: π1 =

(
Ii
)
0≤i≤m1−1 where,

for 0 ≤ i ≤ m1 − 1

Ii =
[
T 1
i , T

1
i+1

[

So the intervals of the first partition π1 are given by the
observation times of the first process P1. We use a similar set
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of notations for the second process: the partition is denoted
π2 =

(
Jj
)
0≤j≤m2−1, with

Jj =
[
T 2
j , T

2
j+1

[

For a process X , we define the variation of the process on
a given interval

[
a, b

[
:

∆X
([
a, b

[)
= X (b)− X (a)

We can then define what we call the "robust" estimator
of the realized covariance between two processes observed at
asynchronous times:

Un =
m1−1∑
i=0

m2−1∑
j=0

∆P1 (Ii)∆P2 (Jj) 1Ii∩Jj �=∅

It is worth noticing that we have added a subscript n: n is
merely a variable which represents the size of our partitions.
n → ∞ means that ever more observations are available and
that the maximum length between two consecutive observa-
tion times converges towards 0.

Un is a consistent and unbiased estimator of the realized
covariance. We provide here, in a simple case, a heuristic of
the proof that the robust estimator is indeed unbiased: we as-
sume that P1 = σ1W 1 and P2 = σ2W 2 where W 1 and W 2 are
two Brownian motions with:

d < W 1,W 2 >t= ρdt

Within this framework, the realized covariance is fairly sim-
ple:

θ = σ1σ2

∫ T

0
ρdt = σ1σ2ρT

We also assume that the observation times are given by two
Poisson processes. We denote Π the information which is
known at all the observation times.

To computeE [Un], we use the informationΠ; we can then
write:

E [Un] = E
[
E
[
Un|Π

]]

= E


E



m1−1∑
i=0

m2−1∑
j=0

∆P1 (Ii)∆P2 (Jj) 1Ii∩Jj �=∅

∣∣∣∣∣Π





= E



m1−1∑
i=0

m2−1∑
j=0

E

[
∆P1 (Ii)∆P2 (Jj) 1Ii∩Jj �=∅

∣∣∣∣∣Π
]


Since the expression 1Ii∩Jj �=∅ is fully determined when Π is
known, we can write it out of the second expectation:

= E



m1−1∑
i=0

m2−1∑
j=0

E

[
∆P1 (Ii)∆P2 (Jj)

∣∣∣∣∣Π
]
1Ii∩Jj �=∅




= E


 ∑
i,j,Ii∩Jj �=∅

E

[
∆P1 (Ii)∆P2 (Jj)

∣∣∣∣∣Π
]


= E


 ∑
i,j,Ii∩Jj �=∅

E

[
σ1∆W 1 (Ii)σ2∆W 2 (Jj)

∣∣∣∣∣Π
]


= σ1σ2E

[ ∑
i,j,Ii∩Jj �=∅

E
[(

W 1 (T 1
i+1

)
−W 1 (T 1

i

) )

×
(
W 2 (T 2

j+1

)
−W 2 (T 2

j

) )∣∣∣Π
]]

Since d < W 1,W 2 >t= ρdt , we know that we can write:

W 2
t = ρW 1

t +
√

1 + ρ2Bt

where (Bt ) is a Brownian motion which is independent from
W 1. So we can see that:

(
W 1 (T 1

i+1

)
−W 1 (T 1

i

)) (
W 2 (T 2

j+1

)
−W 2 (T 2

j

))

= ρ
(
W 1 (T 1

i+1

)
−W 1 (T 1

i

)) (
W 1 (T 2

j+1

)
−W 1 (T 2

j

))

+
√
1− ρ2

(
W 1 (T 1

i+1

)
−W 1 (T 1

i

)) (
B
(
T 2
j+1

)
− B

(
T 2
j

))

If we take the expectation knowingΠ of this sumof two terms,
the second expression is equal to 0:

E
[√

1− ρ2
(
W 1 (T 1

i+1

)
−W 1 (T 1

i

)) (
B
(
T 2
j+1

)
− B

(
T 2
j

))
|Π

]

=
√
1− ρ2E

[(
W 1 (T 1

i+1

)
−W 1 (T 1

i

) )
|Π

]

× E
[(

B
(
T 2
j+1

)
− B

(
T 2
j

) )
|Π

]

because the two Brownian motions W 1 and B are indepen-
dent. The two expectations are equal to zero since, when Π
is known, the two di�erences have the same law as a normal
variable whose mean is equal to 0.

We now focus on the expectation knowing Π of the first
term. It is pivotal to remind that Ii ∩ Jj �= ∅, for instance we
can assume that:

T 1
i < T 2

j < T 1
i+1 < T 2

j+1

So:

E
[
ρ
(
W 1 (T 1

i+1

)
−W 1 (T 1

i

)) (
W 1 (T 2

j+1

)
−W 1 (T 2

j

))
|Π

]

= ρE

[
W 1 (T 1

i+1

)
−W 1 (T 2

j

)
︸ ︷︷ ︸

A

+W 1 (T 2
j

)
−W 1 (T 2

j

)
︸ ︷︷ ︸

B





W 1 (T 2

j+1

)
−W 1 (T 1

i+1

)
︸ ︷︷ ︸

C

+W 1 (T 1
i+1

)
−W 1 (T 2

j

)
︸ ︷︷ ︸

D




∣∣∣∣∣Π
]

For the sake of clarity, we now only use the notation A, B, C
and D. The expectation is equal to:

ρ

(
E
[
AC|Π

]
+ E

[
AD|Π

]
+ E

[
BC|Π

]
+ E

[
BD|Π

])
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Thanks to the common properties of the Brownian motion,
we can see that three of those four terms are equal to 0:

E
[
AD|Π

]
= E

[
BC|Π

]
= E

[
BD|Π

]
= 0

This stems from the fact that, for a Brownian motion B and
times t1 < t1 + h < t2 < t2 + h

E
[
(Bt2+h − Bt2

)
(Bt1+h − Bt1

)]

= E


(Bt1+h − Bt1

)
E


(Bt2+h − Bt2

)
︸ ︷︷ ︸

N (0,h)

∣∣∣∣∣Ft2





 = 0

It is then possible to write:

ρE
[
AC|Π

]
= ρE





∆W 1 (Ii ∩ Jj

)
︸ ︷︷ ︸

N (0,l(Ii∩Jj))




2 ∣∣∣∣∣Π




= ρ× l
(
Ii ∩ Jj

)

where l gives the length of the considered interval. If we sum
over the indices i and j such that Ii ∩ Jj �= ∅, we find that:

E [Un] = σ1σ2ρ
∑

i,j,Ii∩Jj �=∅

l
(
Ii ∩ Jj

)
= σ1σ2ρT = θ

This proof shows that, in a simple case, our robust esti-
mator is indeed unbiased. The result is still valid in the more
general case, when P1 and P2 are two Ito processes. The idea
of the proof is very similar to the one in the simple case.

It is also possible to demonstrate the following result re-
garding our robust estimator:

Un
n→∞−−−→
L2

θ

This result shows that our estimator converges towards the re-
alized covariance, in the 2-nd mean, so also in the 1-st mean,
in probability, and almost surely. To see that, we use the fol-
lowing result [3]:

E
[
U2
n

]
= θ2 + o(1)

We can then write:

E
[
U2
n

]
− θ2 = E

[
U2
n

]
− E [Un]

2 = var (Un)

= E
[
(Un − E (Un))

2] = E
[
(Un − θ)2

] n→∞−−−→ 0

4 Applications Of The Robust Esti-
mator: The Lead-Lag E�ect

In this final section, we would like to insist on the interest
of what we have called the "robust" estimator. Indeed, this
estimator has been devised with a single purpose in mind, i.e.
estimating the realized covariance of two processes when the
observation times are asynchronous; but, as a ma�er of fact,

it can be used in miscellaneous contexts.

We only display here a few ideas regarding what is knows
as the lead-lag e�ect. This e�ect occurs when a delay seems
to exists between two processes: a process P2, called the lag-
ger, replicates partially the variations of a process P1, called
the leader. It is then crucial to properly estimate the lead-lag
parameter θ such that the variation of P2 at a time t is very
similar to the variation of P1 at t − θ.

We do not delve into the details in this paper, whose pur-
pose is to focus on the estimation of the realized covariance
with asynchronous data. For further mathematical context
regarding the lead-lag e�ect, the reader can refer to [4]. We
only want to shed a light on the fact that an estimator very
similar to the one used for estimating the realized covariance
can also be used to estimate the lead-lag parameter. It is writ-
ten as a sum of kind

∑
i,j

∆P1 (Ii)∆P2 (Jj) 1Ii∩Jj �=∅

where the partition
(
Jj
)
is built by translating the initial par-

tition
(
Ii
)
with a parameter ξ. The objective is then to find

the value ξ that maximizes the above-mentioned sum: the
optimal value for ξ then converges towards the lead-lag pa-
rameter.

This shows that the kinds of sums we have used in this pa-
per can be helpful, not only when dealing with asynchronous
data, but in every situation where di�erent time references
intervene.

Conclusion

In this paper, we decided to face one of the many particular-
ities about financial data in real life: when working with sev-
eral underlyings, it is quite common that the available data
are asynchronous. Such a situation may arise when trying to
estimate the realized covariance between two processes: this
is the problem we have chosen to tackle in this paper.

Naive approaches to circumvent the issue of non-
synchronous data are quite easy to implement, but they dis-
play lots of shortcomings, therefore justifying the need for a
more robust approach. It is then necessary to devise an esti-
mator of the realized covariance which is both consistent and
convergent towards the desired quantity.

However focusing on the problem of the covariance esti-
mation with asynchronous data provides some ideas when it
comes to coping with other di�icult mathematical questions
that may arise in finance. When two time references appear
in a problem of financial mathematics, such as estimating the
lead-lag parameter, an approach similar to the one used to es-
timate the realized covariance, may prove to be helpful. It is
indeed be possible to adapt such an estimator to various con-
texts, where the existence of multiple time references plays a
key role in the description of the issue.
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