
Strategy Discovery 
And Backtesting: 
How To Handle 

Multiple Testing? 

Study carried out by the Quantitative Practice 
Special thanks to Pierre-Edouard THIERY

JUIN 2022



Note Awalee

Summary

Introduction 1

1. A�ick Reminder of Statistical Testing 1

1.1. The Philosophy Of Statistical Tests 1

1.2. P-Value In Practice: The Coin Example 2

1.3. Gaussian Tests On The Mean 2

2. Multiple Testing In The Context Of Backtesting and Strategy Discovery 3

2.1. Sharpe Ratio And Simple Tests 3

2.2. Sharpe Ratio and Multiple Tests 3

2.3. P-Value Adjustment: Bonferroni And Holm Methods 4

Conclusion 4

References 5



1

Introduction

Backtesting is a technique widely used in finance when it
comes to strategy discovery: it simply consists in testing a
potential strategy against the set of historical data. Morally,
this amounts to observing how the strategy would have re-
turned, had it been launched several years ago. This way of
doing, albeit widespread across the industry, may prove to be
trickier than it may seem at first sight. Tapping historical data
exposes to a lot of statistical biases, and those biases must be
properly taken into account if one does not want to face poor
and disappointing results once the strategy is implemented in
real life.

Inasmuch as there is inevitable data mining [1] [2] [3]
when a researcher works with historical data, a common prac-
tice is to discount the Sharpe ratio of the trading strategy
being assessed with a discount factor, generally 50%. Such
questions are particularly important in the field of systematic
strategies. However, as the reader may have guessed, a fixed
discount factor, such as 50%, is not scientifically grounded; it
is merely a rule of thumb.

More robust approaches are then necessary. The finding
of a new strategy based on extensive mining of past data re-
quires carrying out numerous tests. Indeed, in statistics, if
a researcher thinks that a variable X explains a variable Y,
he or she can carry out a statistical test: it gives him/her a
way of assessing whether his/her assumption is false or not,
i.e. whether X and Y are closely related. However, in prac-
tical situations, especially in finance, the researcher may try
to find relationships between Y and various variables X1, X2,
etc. If the researcher performs many tests, it is possible that,
by chance, at least one of them will prove to be positive even
though there is no relationship between the two considered
variables.

The issue here is the one of multiple tests on a given set
of data. In our paper, we provide a statistical framework to
cope with the issue when backtesting financial strategies. To
do so, in our first section, we remind the reader of the basics
of statistical testing; then, in a second section, we extensively
set forth how to deal with multiple tests when assessing fi-
nancial strategies. In particular we present methods which
are currently used, and which curtail the odds of finding a
not-so-good strategy once put in production.

1 A �ick Reminder of Statistical
Testing

1.1 The Philosophy Of Statistical Tests

When studying a statistical phenomenon, making assump-
tions on the observed data is a fairly common and intuitive
practice. However, although the assumptions may sound
rather obvious, it is important to statistically and mathemat-
ically assess them in order to evaluate whether or no they are
validated. This is the point of statistical testing.

We assume we have at our disposal a set of observations,
denoted Z . As an example, the reader may imagine we want
to check if a coin is fair: to do so, he/she flips the coin n
times before writing down the observations with zeros and
ones (Bernoulli modeling), for instance:

Z = {X1 = 1,X2 = 1,X3 = 0,X4 = 0,X5 = 0,X6 = 1,X7 = 0, etc.}

Based on the set of observations, the observer makes an
assumption, called the null assumption and denoted H0: for
instance, the coin is fair. If we model the experiment with a
Bernoulli random variable, where 1 stands for "head", it means
that the average of the Bernoulli random variable B(θ) rep-
resenting our statistical phenomenon is worth θ = 0.5.

To test our hypothesis, we must to design a function of
the observations, denoted φ of the following form:

φ = 1R(Z )

where R(Z ) is called the rejection zone. If φ is worth 1, it
means that we reject the null hypothesis.

Intuitively, with our simple example, we can compute the
mean of our observations, θ̂(Z ), and compare it to 0.5. So we
can define the following rejection zone:

R(Z ) =
{∣∣∣∣θ̂(Z )− 1

2

∣∣∣∣ > c
}

with c a parameter. The quantity

θ̂(Z )− 1
2

is sometimes referred to as the t-statistic of our test.
Here, it is pivotal to have in mind what the t-statistic is.

It is a quantity which is computed based on our data. How-
ever, the t-statistic can be seen in two di�erent ways: first, it
is a mere numerical value, based on the observations; sec-
ond, it also defines a statistical distribution based on the
assumption we may have made on the observed statistical
phenomenon.

For instance, with our coin example, Xi is both a numerical
value and a random variable with law B(θ). When defining
the t-statistic, it is important to find mathematical construc-
tion which can be easily interpreted as distribution: for in-
stance here, the sum of n independent Bernoulli variables is
famously known as a binomial distribution.

Two kinds of errors are derived from a statistical test. The
first one is the so-called type I error, when we reject the hy-
pothesis, although it is correct. The second one is the so-called
type II error, when we accept the assumption, although it is
not correct.

if we assume the null hypothesis can be parametrized in
the following manner: θ ∈ Θ0, then the type I error can be
wri�en:

sup
θ∈Θ0

P
[
φ = 1 |θ]

and the type II error:

sup
θ/∈Θ0

P
[
φ = 0 |θ]
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It is also important to assess the level of our test. The test
φ of the assumption H0 is said to be of level α when:

sup
θ∈Θ0

P
[
φ = 1 |θ] ≤ α

Se�ing a level α is a way of finding the corresponding
value c in the rejection zone. With our simple example, the
inequality may be rewri�en:

P

[
n
2
− nc <

n∑
i=1

Xi <
n
2
+ nc

∣∣∣∣θ =
1
2

]
≤ α

where the sum of the independent variables Xi is binomial dis-
tribution with parameters 0.5 and n. Since this law is widely
known, it is possible to find the value of c to make sure that
our test reaches the desired level α.

Another interesting concept is the p-value. It consists in
comparing the distribution of the t-statistic with its value: the
former is denoted T and and the la�er t . The p-value can be
defined in various ways depending on what we want to study.
For instance:

p = P
[
T ≥ t |H0]

if we consider a p-value defined on the right part of the dis-
tribution, or

p = P
[
|T | ≥ |t| |H0]

for a symmetric p-value.

As the reader may have guessed so far, statistical tests is
more of a flexible framework than a rigid process. Computing
the p-value amounts to checking if the t-statistic value is ex-
treme compared to the theoretical law of the t-statistic under
the null hypothesis. If the p-value is small (meaning that t is
very far in one of the distribution tails), it is either that the null
hypothesis is false, or the something highly unlikely has hap-
pened. Formally, we reject the null hypothesis. Of course, this
is done by comparing the p-value with pre-defined threshold
α.

O�en, we use α = 0.05. If the p-value is above this level, it
means the t-statistic value is the outcome of a situation which
my happen in more than 95 cases out of 100.

1.2 P-Value In Practice: The Coin Example
In this subsection, we explicitly compute the p-value in the
case of our simple example. The most natural t-statistic con-
sists in computing: ∑n

i=1 Xi

n
− 1

2

However, as mentioned above, flexibility is key in making a
statistical test. Here, we notice that the sum of n independent
Bernoulli variables is well-known: it is a binomial distribution.
The t-statistic law is denoted T . The t-statistic value counts
the number of heads.

We decide to compute the p-value on the right of the dis-
tribution, to ensure that the coin is not biased towards falling
head:

P

[
T ≥ t

∣∣∣∣θ =
1
2

]
=

n∑
i=t

P
[
T = i

∣∣∣∣θ =
1
2

]

=
1
2n

n∑
i=t

n!
i!(n− i)!

For a numerical example, imagine we flip a coin 20 times,
and we get 14 heads. In this case, the p-value is close to 0.058.
If we choose an α level of 0.05, the p-value exceeds α, mean-
ing that we are in a situation which would happen 95% of the
time if the coin is fair. Therefore our test does not lead to the
rejection of the null hypothesis.

1.3 Gaussian Tests On The Mean
In this subsection we extensively set forth one of the main
categories of statistical tests: those which are done on the
mean of a Gaussian distribution. This class of tests indeed
proves to be pivotal in finance when studying the distribution
of returns of an investment, as we will see in our next section.

Our set of observations Z is made of n observations of
a variable, and we assume these observations Yi are indepen-
dent drawing of a random variable Y with normal distribution
with mean µ and variance σ2.

Z = {Yi , 1 ≤ i ≤ n}

Our null assumption H0 is that µ is equal to a given level
µ0: we want to statistically assess the validity of such hypoth-
esis. An intuitive solution consists in computing the mean
Ȳn of our observations, insofar as we know this mean should
converge towards the mean of the distribution (law of large
numbers). We then set a rejection zone of kind:

R(Z ) = {|Ȳn − µ0| ≥ c(α)}

where we determine c(α) in accordance with the desired level
of α. However, even though this way of doing seems rather
simple, it is also possible to present a second approach, which
is more widely used when it comes to practice.

Indeed, we can define the following t-statistic for our
problem: √

n(Ȳn − µ0)
sn

where sn is the unbiased standard deviation estimator, i.e.

s2n =
1

n− 1

n∑
i=1

(
Yi − Ȳn

)2

Theoretical results gives us that such t-statistics, under
the null hypothesis, follows a Student law with n-1 parame-
ters, which is a well-known law. So it is possible to define the
following rejection zone:

R(Z ) =
{∣∣∣∣

√
n(Ȳn − µ0)

sn

∣∣∣∣ > c(α)
}
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where the value of c(α), as already mentioned, is determined
thanks to the quantiles of the t-statistic distribution.

Similarly, we can compute the p-value of our t-statistic.
For instance, if we consider it is important to assess what may
happen at both sides of the distribution, we could compute,
where T is a Student distribution with n− 1 parameters, and
t is the t-statistic value:

P
[
|T | > |t|

]

2 Multiple Testing In The Context Of
Backtesting and Strategy Discov-
ery

2.1 Sharpe Ratio And Simple Tests
Let us assume we devise an investment strategy, which gen-
erates a set of realized returns over a period of length Th. We
denote rt the return between times t−1 and t , for 1 ≤ t ≤ Th.
Simply having a look at the set of past returns is the first idea
that may cross someone’s mind: if the path of returns looks
good, one may be inclined to believe that the strategy is also
good. However, we would like to formalize the assessment
thanks to a statistical test.

So, the purpose of our test is to check whether the strat-
egy is able to generate true profits in the future. We want our
statistical test to tell us if the returns of our strategy are dif-
ferent from 0. Our null hypothesis (H0) is that the historical
returns follow a normal distribution with mean µ and vari-
ance σ2, that those returns are independent and identically
distributed, and that µ = 0. If the null assumption is rejected,
we admit we have found a strategy able to generate non-zero
returns; otherwise we disregard the strategy.

A mentioned in the final subsection of our first part, a nat-
ural t-statistic is the following:

√
Thµ̄
σ̄

where µ̄ is the estimation of the average returns based on the
set of observed historical returns, i.e.:

µ̄ =
∑Th

i=1 rt
Th

and σ̄ is the unbiased estimation of the standard deviation of
the set of observed historical returns, i.e.:

σ̄ =

√√√√ 1
Th − 1

Th∑
i=1

(rt − µ̄)2

Under the assumption H0, the t-statistic, seen as a dis-
tribution, follows a Student law with Th − 1 parameters.
Therefore, it is straightforward to assess whether the null
assumption must be rejected or not, for example by comput-
ing a p-value. For instance, if the p-value is above 0.05, we do

not reject the null assumption: if the average of the returns is
close to 0, this scenario is one which falls in the category of
the 95% outcomes.

It also worth noticing that the Sharpe ratio is closely re-
lated to our t-statistic. Indeed, in our case, the Sharpe ratio is
simply:

SR =
µ̄

σ̄
So the Sharpe ratio is the product of the t-statistic value with√
Th. Thus, for a given period length Th, a higher t-statistic

value is equivalent to a higher Sharpe ratio, then to a lower
p-value. The lower the p-value, the higher the chance of re-
jecting the null assumption, the higher the significance of the
investment strategy.

However we have only presented the single test scenario
so far. In the next subsection, we introduce the multiple test-
ing issue.

2.2 Sharpe Ratio and Multiple Tests
We now set forth a statistical framework to handle the mul-
tiple tests question when devising investment strategies. The
use of the Sharpe ratio may be misleading due to the exten-
sive data mining made by practitioners from a limited set
of historical data. It is then possible to discover profitable
strategies which are not as good as expected in real life. In
this subsection, our purpose is to show how to adjust the
Sharpe ratio to take into account data mining.

To begin with, we resume from where we stood at the end
of our previous subsection: given a set of Th historical returns,
it is possible to test the null assumption of i.i.d, normal returns
with mean 0 by computing the p-value:

pS = P
[
|T | > |t|

]

The capital S is here to dwell on the fact that this is the p-value
from a single test. T is a student law with Th − 1 parameters,
and t is our t-statistic value.

As of now, here is the situation: we assume that the re-
searcher has tried, not only one strategy, but N di�erent
strategies, and he or she wants to choose the most profitable
one. To do so, when backtesting his/her N strategies, he/she
computes the Sharpe ratio for each one of them, and he/she
then keeps only the strategy with the highest ratio.

The question is: are we sure that the chosen strategy is
really good? Indeed, the finding of this strategy is only the
conclusion of a process made of multiple tests. It is possible
that, by chance, we finally end up with a great strategy, but
on paper!

We formalize this question in the following manner. t
is now the t-statistic value of the chosen strategy. The null
hypothesis H0 is that none of the N strategies can generate
non-zero returns, and that the N t-statistics distribution, de-
noted Ti , for each strategy are independent.
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We can now define the p-value pM of our multiple tests
situation: it is the probability

pM = P
[
max
1≤i≤N

|Ti| ≥ |t|
]

where Ti are independent Student distribution with Th−1 pa-
rameters. Since the Ti are independent, pM can be rewri�en:

pM = 1−
N∏
i=1

P
[
|Ti| < |t|

]

= 1− (1− pS)N

Mathematically, we directly see that, when N grows big-
ger, then the p-value pM tends towards 1.

A numerical examplemay help the reader visualize the im-
pact of multiple testing: let us imagine that the single p-value
pS is worth 0.049. If we consider the chosen strategy and see
it as a unique strategy, with no a�ention to the previous work
of "testing" N strategies, the p-value is under the α level of
0.05. We confidently reject the null hypothesis: our strategy
is deemed profitable.

However, if we now consider the multiple testing p-value
pM, it is worth 0.3949, which is far above the α level. The null
hypothesis is not rejected, and the strategy is deemed to have
zero returns.

This approach is interesting since it provides us with a
mean of determining a correct haircut for the Sharpe ratio, in-
stead of an exogenous value such as 50%. To do so, we equate
pM, which is known, with what the p-value of a single test
would be:

pM = P
[
|T | > |t|

]

The crucial element here is to bear in mind that our t-value is
equal to the Sharpe ratio multiplied by the square root of Th,
the number of observations. Since we want to find the haircut
coe�icient for the Sharpe ratio, we replace the Sharpe ratio by
a haircut Sharpe ratio: HSR = γ × SR. So:

pM = pM = P
[
|T | >

∣∣HSR√Th
∣∣]

It is then possible to numerically determine the coe�i-
cient γ. Let us assume we have 20 years of monthly returns,
meaning that Th = 240, , and that an annual Sharpe ratio of
0.75 leads to a p-value of 0.0008 for a single test. For N = 200,
pM = 0.15. The adjusted Sharpe ratio must be 0.32 accord-
ing to the above equation. So carrying out 200 tests leads to
a reduction of the original Sharpe ratio by approximately 60%.

As we have seen in this subsection, the single p-value is
no longer helpful when it comes to assessing the statistical
significance of the strategy. The multiple testing p-value pM

is a more appropriate measure.
However, we have so far worked in the simplest case, when

all the statistical tests are independent. In real life, this is not
the case; in the next subsection we set forth a framework to
handle properly the p-value adjustment in the case of non-
independent tests.

2.3 P-Value Adjustment: Bonferroni And
Holm Methods

In this part, we now assume we want to test M assumptions,
denoted Hi for 1 ≤ i ≤ M; each one leads to a p-value. So we
have a set ofMp-values, denoted pi for 1 ≤ i ≤ M. Among the
M assumptions which are tested, R are rejected: they can be
rejected either for a good reason (the assumption Hi is false),
or for a bad reason (false positive). In finance,M would be the
number of tested strategies: for each one of them we want to
test an assumption on its ability to generate non-zero returns.

We denote Nr the total number of false positives. In our
case of financial strategies, it would correspond to the num-
ber of strategies which are deemed profitable when they are
not, since the null assumption Hi is, as above, that strategy
i displays zero returns. What is called the family-wise error
rate, denoted FWER, is the probability of finding at least one
false positive:

FWER = P [Nr ≥ 1]

The FWER is a generalization of the type I error, set forth
in the first section of this paper.

The Bonferroni [4] and Holm [5] [6] methods are a way of
adjusting the p-values in the case of FWER. To do so, we sort
theM p-values by increasing order:

p(1) ≤ p(2) ≤ · · · ≤ p(M)

For the sake of clarity, p-value p(i) is associated with the test
of hypothesis H(i).

Bonferroni method consists in adjusting each p-value
equally, by multiplying all of them by the number of tests:

pB(i) = min
(
M× p(i); 1

)

So, if we observe 10 strategies and one of them displays a
p-value of 0.05, the adjusted p-value is equal to 0.5, meaning
that the strategy is not significant at 50%.

Holm’s method consists in adjusting the p-values sequen-
tially. To do so, we compute, for i from 1 to M:

pH(i) = min

(
max
j≤i

(
(M− j + 1)p(j)

)
; 1

)

In both cases, we see that for each strategy, we increase
the p-value, meaning that we are more selective when check-
ing whether one of them deserves to be considered as a prof-
itable strategy.

Conclusion
In this paper, we provide the reader with some insight into
the issue of backtesting and multiple testing. Carrying out
many tests on the same set of data is plagued with many bi-
ases, which must be taken into account when devising finan-
cial strategies.
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The framework of statistical tests has been developed to
test statistical hypotheses. However, when performing sev-
eral tests on a given set of data, we must pay a�ention to the
fact we may accidentally find out a result which proves to be
false in real life. This question is particularly crucial in finance,
where backtesting is pivotal in the devising of new strategies.

We set forth two simple ways of dealing with the issue.
The first one is a refinement of the widespread Sharpe ratio
haircut. Instead of using a predetermined value, it is indeed
possible to assess the correct haircut more precisely. How-
ever this framework is possible under the assumptions that
the tests are all independent, which is seldom in practice.

We then presented two classical ways of adjusting p-
values in the context of multiple testing: the so-called Bon-
ferroni and Holm methods. They consists in tweaking the
various p-values: the new obtained values are thenmore strict
when assessing whether the corresponding strategymay gen-
erate non-zero returns. Since the new p-values are superior
to the old ones, the criterion is more selective, thus avoiding
strategies researchers from picking too-profitable-to-be-true
strategies.

So those methods are a simple way of improving the qual-
ity of backtesting, and the robustness of strategy finding.
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