Fractional Methods in
Financial Modeling Part | :
Introduction

Study carried out by the Quantitative Practice
Special thanks to Baptiste Chantry.

awalee

JUNE, 2023



Summary

Introduction 1
1. Fractional Processes 1
1.1. Volterra process 1
1.1.1 An introducing example 1
1.1.2 Definition and first properties 2
1.2. Brownian semistationary process 2
1.3. Fractional Brownian motion 3
1.3.1 Long-Range dependency 5
1.3.2 Self-Similarity 5
2. Fractional Calculus 6
2.1. Rienmann Liouville Fractional Derivative 6
2.2. Caputo and others Fractional Derivatives 7
Conclusion 7
References 8

Note Awalee




Introduction

It is well known that the Black Scholes Merton model fails
to reproduce some crucial features observed in the market
of which the smile of volatility surface is the most obvious.
One of these main issues lies in the modeling of the asset
underlying which relies on one assumptions disconnected
from the market obervations: the constant volatility.

The time series of the realized volatility go against these
model assumptions and even reveal some complex features
such as the trend to cluster in function of the spot underlying
level. Stochastic models were introduced to deal with these
inconsistencies, like the Heston model, a very popular model
that was studied by both practioners and academics. In this
model, both underlying asset and its variance are assumed
to be stochastic processes driven by correlated Brownian
motions.

Some of these models succeed to reproduce some complex
features of the volatility surface particularly when a good
calibration is performed. However, if some models can be a
good choice to reproduce complex volatility surfaces, they
suffer from over-fitting or fail to capture fine properties of
the surface.

Indeed recent studies have proven that volatility is a per-
sistence process and thanks to high frequency data more
easily available and handled, it has been revealed that the
regularity of its paths is slightly different from those gen-
erated by brownian motion. One limitation identified at he
heart of these inconsistencies with models, seems to be the
independance of the Brownian motion increments.

In consequence, we will focus our study on more general
classes of processes as a source of randomness which can
mainly reproduce the target features.

To capture all of them, we will consider “fractional” processes
that is a class of continuous-time processes incorporating
both roughness (irregular behavior at short time scales) and
persistence (strong dependence at longer time scales). Hence
we will introduce Volterra processes which is a general class
of processes and particularly a subclass of processes called
semistationary brownian processes.

As an example of these processes, we will focus intensively
on fractional brownian motion (fBm), a generalization of the
brownian motion which allows the correlation of increments.
It will be very suitable to incorporate memory depending on
a special value: the Hurst parameter.

The key features that make fractional processes very inter-
esting regarding the modeling of volatility or interest rate
processes includes the following: long-range memory, path
dependence, non-Markovian propoerties, self-similarity,
fractal paths. However, all these properties induces big
challenges when it comes to design practical models with
fractional processes.

Before diving into the power of Volterra processes, we intro-
duce and recall some definitions and properties which will
allow us to understand how the processes are defined prop-
erly. This will be the goal of this first note of the serie.

1 Fractional Processes

In this section, we will lay the foundations of the paradigm
of fractional processes. Our main goal is to handle processes
which can capture some common features like long range
dependency.

After introducing the general framework and defining funda-
mental classes of processes, we will focus on a very particular
and important case: the fractional brownian motion.

1.1 Volterra process

Let precise the framework in which we will developp our
study:

for T > 0, let’s consider a filtered probability space
(2, F,F = (Fp)ecpom); P) satisfying the usual conditions with
a standard brownian motion (W,),¢[o,r] adapted to .

1.1.1  An introducing example

Consider the following Stochastic Differential Equation
(SDE) with constants A, 1 > 0:

dXI = —)\det + 'f;‘d W{ (1)

where W is a classical brownian motion and X; € R.
It could be shown that the stochastic process X defined by:
X, =e MX, + /: ne M=udw, )
0
is a (strong) solution of (1).

For a fixed s such as 0 < s < t, we can write:

t
Xi = e_)‘((_s)X,Jrf ne_)‘“'”)qu (3)
s
Taking a general mesurable function f and setting ¢ =
1—g—2Mt—3)
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we deduce that conditionally to Fi:
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We can also derive the markovian property that is:

E[f(x)| F] = E[f(x)| X]

This stochastic process is a Ornstein Uhlenbeck (OU) pro-
cess which exposes a memory (mean reverting process) via
the specific form of the exponential kernel e~* depending on
t.

1.1.2 Definition and first properties

Now let’s be more general by replacing the exponential ker-
nel by a kernel such as K : [0, T]* —= [0, T] and consider the
process:

&=@m+fkmﬂmm 0
0

with g a bounded Fy-measurable function. This process
defines a Volterra process.

In the following, we assume that:

SUP e qo.7] fot K(t,s)*ds < oo

Gaussian process A first result states that (X;):0 is a
gaussian process with mean X, and covariance function
equals to

E(XX) = [ K(t, u)K(s, udu.

To derive a control on the moments of (X))o, the
Burkholder-David-Gundy (BDG) inequality is the starting
point and it states that:

for all p > 0, there exists universal constants c,, C, < 00
such that, for all continuous local martingales (X)>o start-
ing from zero, for all T > 0, the following inequalities hold
in [0; +00]:

CPE(SUPre[o,TﬂXf‘zP) < E(CXF;) < CPE(Supte[o.T]lelzp) (5)

Continuity From (5), we can show that assuming some
boundary conditions, the Volterra process (X;)s0 has a con-
tinuous modification. Indeed, there exists a constant N, > 0
such as:

sup,, o (X — XP) <
b (ls0-gor ([ keorats
(fos(K(t, u)— K(s, u))zdu)g), 0<s<t<T

Then provided that, for a chosen v:

|g0(t)—g0(s)|2 +] K(t, 's)zd.fwf0 (K(t, u) — K(t, u)*du

Lt

)

the result is a consequence of the application of the Kol-
mogorov criterion we recall below:

Let (X,)i<7 be a process in R with T >0 and such that: there
exists p > 1,¢ > 0, and ¢ > O such as:

E(|X¢—X5\p) < c|t—s|m, ts<T (8)

Then there exists a modification of (X;):<r ie a process with
continous paths whose are a-Hélder for all & € |0, i)
Hence, almost surely, for all t > 0, there exists a constant

% 2 0 such as forall u, v € [0, t] then | X, — X,| < Kk|u—v|*

Moment estimates Following the use of the convexity of
the function x — |x|P and the BDG inequality on the local
martingale u — fﬂu K(t, s)dW,, we can also derive moment
estimates of the Volterra process (Xi);o as follows:

Supre[o,T]Equlp) <

t e ©)
MP‘T(T + SUPtefo,T] (f K(t, s)zds) ‘)
0

1.2 Brownian semistationary process

Now let’s introduce another class of processes: consider a
stochastic process X = (X;)rer Which admits the representa-
tion

t
X; = / gt—sodW, teR (10)

This is called a brownian semistationary process (BSS). In
(10) 0 = (o+)ter is a (Fr)-adapted covariance-stationary pro-
cess such as:

sup E[07] < oc (1m)
teR

and g is a Borel-measurable function g : (0,00) — [0, )
with

jo. g(x)2dx < 0o (12)

The brownian motion is then convolved with this determin-
istic function g referred as the kernel in the following.
Itisimportant to note that when ¢ is deterministic, X is gaus-
sian while a stochastic ¢ makes it non-gaussian.

When W is independent of o we have:

Xr|(0's)s<r ~N (0: J;)oo g(u)zo'f_udu)



Under some asumptions the process X is well defined and
covariance-stationary. In Fractional Methods in Financial
Modeling part II, we will introduce additional assumptions
concerning the properties of the kernel g which will permit
us to derive some crucial results for designing a method of
simulation called hybrid-scheme. To be more precise we will
focus specialy on processes of the form

t
X< f gt —sjodW, teR (13)
0

also called as truncated Brownian semistationary process
TBSS. It is a particular case of Volterra process where

K(t,s) = g{t — s)o.

In the next parts of this serie, we will experiment the Monte
Carlo pricing in models which incorporate this kind of pro-
cess to fit the characteristics of the observed volatility smiles
as we already discussed in 1. Indeed we will consider rough
volatility models in which roughness will be driven by pro-
cesses parts of TBSS class. In particular our equations of
interest will have the following form in R:

X=X+ /tg(r — §)b(X;)ds
. (14)

+ / : gt — s)a(Xs)dWs
0

with X; € R, o,b real continuous function with a linear
growth condition that is:

[b(x)| + |o()] < k(1 +|x

The part driven by the brownian motion is a special case of
(13). The equation (14) is usually referred as a Stochastic
Volterra Equation (SVE). As examples of kernel functions, we
have:

)y, xeR (15)

« exponential kernel:

gt=e? A>0 (16)

« gamma kernel:

a—1

el
glt)=e @’ A>0 (17)

» fractional kernel:

ol 1
&t) = @ € (5,1) (18)

fractional regularity Now if we consider (7) again, in the
particular case of the fractional kernel (18), we have v = 2H
and we obtain that the paths of the fractional Volterra pro-
cess are locally ¢-Holder continuous for ¢ € (0, H). In this
sense, H can be viewed as a roughness parameter. Note that
in the case H = %, we recover the regularity of the brownian
motion.

1.3 Fractional Brownian motion

In this section, we will focus on a very important example of
a Gaussian Volterra process: the fractional brownian motion

(fBm).

The Black Scholes model is maybe the most known pricing
model that uses classical brownian motion as randomness
source. Although it is a benchmark model, it is well known
that it fails to reproduce some crucial features observed in
the market. Among the reasons explaining this failing, the
use of Brownian motion as randomness source needs to be

highlighted.

Indeed, several studies show that the asset return does not
have a Gaussian distribution law but exhibits an excess of
Kustosis and heavy tails. Time series of return distribution
also reveal a long-range dependency. From this observation,
one solution would be to replace standard brownian motion
with another process which exhibits such features. In this
sense, the fractional Brownian motion is a perfect candidate
specialy regarding the long range dependency.

Unfortunately, it has been shown that modelling asset re-
turn with diffusion driven by fBm can lead to arbitrage.
Some corrections could erase these possibilities of arbitrage
for example by adding in the diffusion a local martingale
part driven by a brownian motion.

However recently the main focus changed and several stud-
ies suggest to use a persistent process like the fBm for
modelling other processes which are involved in the pric-
ing model like the spot variance or short rate processes. This
is consistent with the option prices observed in the market
and volatility time series. From this point, it is worth to
study in details the properties of the fBm.

To clarify our study, let put the basis of the market model we
will consider. Let (Q,F = (F¢)ecqo,r), Q) be a filtered probabil-
ity space with a filtration F generated by two independent
Brownian motions W and W. The probability measure Q
refers to one risk neutral measure.

Let S = (S, t € [0, T]) be astrictly positive asset price process
with the following dynamic:

dS; = riSedt + 0:S(pd W, + /1 — p2dW)) (19)

The volatility process o is a square-integrable cadlag (french
acronym meaning "right continuous with left limit") process
and we assume it exists a deterministic function f : R, xR —
R, such that:

or=f(t,Y) e L (20)

with Y a gaussian Volterra process such as:

Yo = [ Kt s)dW;



as previously presented.
Now we define the covariance function of Y;: for all t,s > 0:

[(t,s) = E(Y;Y)

and the mean function:
m(t) = E(Y?)

Recall that a gaussian process is entierely defined with mean
m and covariance function I, it can be shown that given a
parameter called the Hurst parameter H € (0, 1], it exists a
centered gaussian process W/ = (Wf),;g with covariance
function equals to

1
I(t,s) = E(tIH + 52— \tZH - 32H\) (21)

for all t,s = 0. This process is called a fractional brownian
motion.

From (21) we can derive the following properties which de-
fine it uniquely:

o (Wiio = 0 as and E(W/') = 0 for t > 0 (starting from
zero)

» (Wy,); has stationary increments

. ]E[(WH,, - WH‘S)Z] =|t—s/*fort>s

The sign of the covariance of the future and past increments
is determined by the Hurst parameter. For H > 7 the covari-
ance is positive and for H < % it is negative. Taking H =
we get the classical brownian motion.

Another key result is the fact that for H € (0, ;—,) u (% 1)
the fractional Brownian motion is not a semimartingale. Re-
call that given partition I1 = (t);», such as f; < t;,; with

8 = max|ti; — tj| the p-variation of a stochastic process
i<n—1

(X)ezo is defined by:
vp(ﬂ) B gl_n;ll] E;:)] |Xf1—| o Xff|p

It can be demonstrated by showing that the total variation
(vi(MM) and the quadratic variation (v,(7)) of the fBm is not
finite except for H = ;. And as we discussed earlier, it leads
to the possibility of arbitrage opportunities when it is chosen
as the randomness source for asset prices. Another difficulty
from this property is the impossibility to use ito Calculus.

i !
|‘ (i T MR T )
I\ o~

Figure 1: Simulated paths of fBm for different Hurst param-
eters: H=0.1 (grey), H=0.5 (red), H=0.8 (blue)

Integral representations What it will be particularly im-
portant for us is the integral representation of fBm. Among
representations which exist, two specialy will be relevant for
the following sections: the time representation and mainly
the Volterra representations.

The time representation of fBm is such that:

0
Wh - —/ ((t— 92 = (=5 2)d W+
i (22)

with

The first Volterra representation is given by:

T
W - f K(t, s)d W, (24)
0
with
K(t,s) =
(t—s)i 11 1 & (25
Ts<t F(H—%)EF](H_E’E H,H+§, —

with ,F; the hypergeometric function.

The second Volterra representation we will present here is
the Rienmann-Liouville one. It will be our starting point for
simulating the fBm (see Fractional Methods in Financial Mod-
eling part Il). This is given by:

wi = /r Ky(t — s)dW, (26)
]

with
1
r(H+ %)

Ky(t) = =2, He(o,1) (27)



1.3.1 Long-Range dependency

In this section we will define and detail two important prop-
erties of fBm which are long-range dependency and self-
similarity. Before explaining these properties let’s consider
the framwork of general stationary stochastic processes.

A stochastic process X is stationary if for all n,d > 0 and
ky,...ky = 0, the vectors (X, ,..., Xy,) and (Xg.p .o Xigon)
have the same distribution. And since processes under our
interest are mainly gaussian, it only requires that autocorre-
lations functions defined here by A(k) := cov(X.k, Xn) does
not depend on n. Then the process X is said to be a process
with long range dependency if its covariance functions A(.)
are not integrable that is ﬁ)oo IA(s)|ds = oo. In a discrete
view it is equivalent to require that covariance function de-
cays slowly such that we have 7, Mk) = 0o meaning
intuitively the cumulative effect of the high-lag correlations
is significant. Note that it exists other definitions of Long
Range dependency based for example on slow varying func-
tion.

It is covenient to keep in mind that such a covariance struc-
ture have an impact on the statistical inference. For in-
stance, taking n points of the process Xj, ..., X, when we as-
sume Var(X;) < oo for all i € [1,...,n] then the variance
of mean X, = 13" X; is proportional to 1 if the variables
Xi, .., Xy are uncorrelated say independants. If we assume
that A(k) = e=®¥, o > 0 in this case, the autocorrelations
functions are summable when n is large enough and the vari-
ance of the mean is still proportional to 1.

On the other hand, if autocorrelations decay such as:

k) ~ c|k|™%, k— o0 (28)
with @ € (0,1), then autocorrelations are not summable.
From a statistical view it modifies for instance the confi-
dence interval of the mean X, and all the tests related.

The covariance between increments at a distance v = |t — s|
decreases to zero as v2" =2 and in this way the fBm exhibits
a long-range dependency.

It is a well established fact volatility is a persistent process
and in this way, it makes sense to model this process with
volatility models in which autocorrelation functions decay
as (28). Traditionally models of (log) volatility which catch
the long range dependency use fBm with an Hurst index
H=1-a/2€(3,).

1.3.2 Self-Similarity

Quantifying longe range dependency can be an hard work
and as an alternative, self-similar process can be used in-
stead of quantifying this property. In this section we will
define the self-similarity and its links with Longe Range de-
pendency.

We say a stochastic process (X;):>q is self-similar if it exists
areal H such as: for all

X, £d'x. (29)

with parameter H called the self-similarity exponent.

It is important to note a self-similar process cannot be a sta-
tionary process and in this case, Long Range Dependency
is not under consideration. But this property rises if the in-
crements are stationary and fBm is a perfect example of a
self-similar process with stationary increments.

To have an overview of the relations between these proper-
ties and the nature of the process we can consider the figure
below.

Self-similar process

EVY Process

Stable process

Bin with drift

Figure 2: Relations between different types of processes and
Long Range Dependency, self-similarity

Self similarity is defined by (29) and intuitively it show that
a process have the same structure at different scales of time.
But for a better understanding of the power law of self-
similar process we can set a = ; to have:

X = tX
hence the CDF functions of X; and X; noted respectively F,
F, verify:

() = FlCg)

leading:

1 b'e

£09= )

where f; and fi are the densities respectively of X; and X;. By
setting x = 0, we get:

50 = 5£0) ()

showing up that the density of X; is the same as X; modulo
a scaling term.



In order to check the self-similarity property, there are two
approaches: the first is by using (30) for an estimation of
the Hurst parameter. This approach needs to estimates H
by regression after estimating f;(0) using kernel estimator or
empirical histogram. The second is called the curve fitting
method and is based on comparing the aggregation proper-
ties of empirical densities.

2 Fractional Derivative

The starting point of this section is the definition of a specific
operator. It could seem to be not related with the subject at
first glance but such operator will arise in next section when
we will focus on pricing model including Volterra process.
Since this note aims to group all the basics of the serie, it has
been chosen to include this definition at this stage.

In order to illustrate the araising of such operator and to
link it with pricing issues, we will give the example of the
rough version of the famous Heston model. In this case,
characteristic function of the log price E[evo85)], y € iR, of
the underlying (stock) 5 is expressed in terms of functions
depending on the solution to a specific "fractional Riccati
equation” in form of D®® = P(¢) where P is a second de-
gree polynom. In this section we will attach to give a precise
sense to the operator D%,

Recalling that F : | — R with | C R is called a primitive
function of f : | — R if for x € I, dZE{X) = f(x), the fun-
damental theorem states if @ € R the function defined as
X = faxf(x)dx is a primitive function of f and if D is the
derivative operator we have:

D(F)(x) = f(x) (31)

and we can see the integration as the reverse operation of
differentiation.

Then one can define the n-th derivative operator by D*(f) =
%(D”'W(f)). Applying the same process to integration per-
mit us to define what we call the integral of n-th order rep-
resented by D™™:

o= [ 1 [T s

We thus have the following direct result:

D="(f)) = D™ "(f),m>n

Let f be an integrable function on I = [a,b] with a, b € R.
Let x € I. Then, we have: for all n > 2,

/ / ' f o f(yn)dyndyn_

/ x — u)" 'f(u)du

.dy,dyr (32)

(n -1

This result is our starting point. Indeed, the natural follow-
ing step is to generalize this result to real number, and using
the Gamma function it leads to what we call the Riemann-
Liouville fractional integral:

r; ) f (= 0" Fu)du, @ >0

It will be discussed the conditions under which this integral
is well-defined.

Let now define the a-order derivative. The process is the fol-
lowing: we can define D™ for any o > 0 and we can define
D" for any integer n > 1. Hence, takingn—1 < a < n,
we can define the fractional integral D"~®. The next step is
to take the n-th order derivative of D"~ then, it defines the
(left-hand) fractional derivative:

pop_ 4 d

dx® dx”( £

2.1 Rienmann Liouville Fractional Deriva-
tive

We have seen the strategy used to define fractional inte-
gral and derivative operator. We now define the Rienmann-
Liouville (RL) fractional derivative whcih is more general and
will be very important insofar as it is one way to represent
the fractional Brownian motion. The next section will be the
object of study of this stochastic process.

Let I = [a, b] be a finite real interval. We define the left-
side fractional integral by:

P T
[2(F)(x) 1"(0:)/ (x—t)1'°‘dt’ a<x,0<a (33)

As a remark, we can define in the same way the right side
Rienmann-Liouville fractional integral:

b
f(0)
’b (f)() r([}_')_/ mdt, X<b,0<0’

With n € N, setting a = n, we have:

1%(F)(x) = f FOx—0""dt, a<x, 0<a (34)

-1
We can now define the left side fractional derivative of order
@ > 0. Setting n = | + 1

D2 = D((F) =

(35)
(dX”)F(n—a)f r)]-m: n t, a<x, 0<a

Let n € N then we can verify that: D% (f)(x) = f(x) and

D™.(f)(x) = f™(x). Considering a constant function f = ¢ €

TRon a finite lnterval I=[abl CR Leta=2¢c(0,1)bea
. . q

fractional number. In the figure 1 below we see the graph of

the fractional derivative function cos for different orders.




T ‘ T ' T T self similarity are crucial and made it a tremendous source
] of randomness for modelling process like volatility.

In the second part, we introduced the important and non-
intuitive notion of fractional derivative operator which will
arise in the rough volatility models we will consider in the
following notes. Since this operator is rarely defined in de-
tails, the main purpose was to clarify and precise this key
operator.

Figure 3: Rienmann-Liouville fractional derivative of sin fuc-
ntion for order a = 0,0.1,....,0.9 corresponding of the graphs
from right to left

2.2 Caputo and others Fractional Derivative

Several other definitions of fractional derivative exist.
Among them we can cite: Marchaud derivative and left/right
Griinwald-Letnikov derivative. Some others are also based
on the Riemann-Liouville integral like the Caputo which is
similar in the form to the RL one. Setting n = |a] + 1iis
defined as follows:

L R A ()
" Mn—-a) ), (x-tra-n
dnf
dx"

Dz (f)(x)
(36)
(D)), a<x 0<a,
In the next notes of the serie, we will consider the RL repre-
sentation of the fractional derivative.

Conclusion

The volatility surface exhibits some features like persistence
and roughness. In this first note of the serie dedicated to
fractional methods, we have seen that in order to reproduce
these properties, special classes of stochastic process are
available. In this sense, we presented the volterra processes
which is a general class defined on a what we called a ker-
nel function. Particularly we have highlighted a subclass of
Volterra process named truncated Brownian semistationary
processes.

A special case belonging to this class, is the fractional brow-
nian motion: it admits a Volterra representation based on a
special kernel in the form of a convolution with a brownian
motion. This kernel is called the fractional kernel and it per-
mits to bring the roughness we are interested in. We have
also seen that its properties like long range dependency and
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