Machine learning methods
for option pricing and
model calibration

awalee

SUMMARY

Introduction 1
1. Option pricing frameworks 1
1.1, The Black Scholes framework 1
1.2, Implied volatility in Black Scholes 1
1.3. The Heston model 1
14. Classical pricing methods 1
1.5. Numerical methods for implied volatility 2
2. The machine learning approach 2
2.1. Neural networks 2
2.2, Gaussian process regression 3
2.3. Optimization of hyperparameters 4
24. Pricing with machine learning 4
25. IV surface generation with ANN 6
3. Calibration with ANN 7
3.1. Problem formulation 7
3.2. Calibration from IV surface 7
Conclusion 8
References 8

Note Awalee

Introduction

The aim of this article is to present the application of ma-
chine learning and deep learning to option pricing and finan-
cial model calibration in a data-driven approach. Efficient nu-
merical computation has become increasingly important in fi-
nance with real-time risk management or counterparty credit
risk. The motivation to use machine learning methods is to
save computational cost in comparison with classical numer-
ical methods such as Monte-Carlo, numerical integration or
root-finding without loss of precision.

More concretely, the goal of the study is to train a ma-
chine learning model to learn the price of an option or IV sur-
face given model parameters or, in the case of calibration, the
parameters of the model given observed market prices or im-
plied volatility. The data we use to train machine learning
models are generated from classical pricing methods.

In this article, we limit our study to Black Scholes and He-
ston frameworks for single or multiple underlying European
options and American option. We also tackle the problem of
calibration and implied volatility surface generation for the
Heston model from a machine learning perspective.

We conclude that the machine learning approach can be
time efficient and very accurate for these problems.

1 Option pricing frameworks

In this section we briefly present the classical option pric-
ing frameworks such as Black Scholes and Heston stochastic
volatility model along with different pricing methods we use
in our study to generate synthetic data and compare results

1.1 The Black Scholes framework

In the Black-Scholes framewaork, a non-dividend paying as-
set price is assumed to follow a Geometric Brownian process
which can be expressed under the risk neutral measure as:

de = J‘sfdf + Jstd W;Q
A PDE for option price can be derived by applying the Ito

lemma to the option price expressed as a function of t and S,
and by using the principle of portfolio replication :

av 1228\/2 av
8t+205852+r585_rv_0

with terminal condition V(t = T,S) = (S, — k), for an Euro-
pean call option

1.2 Implied volatility in Black Scholes

The Black Scholes implied volatility corresponds to the volatil-
ity o* in the BS model that matches the BS price with the
observed market liquid option prices and can be expressed as
the solution of:

BS(G'“, 50= K: T: r) = Vmarkef (1)

The monotonicity of the BS equation with respect to o guar-
antees its existence. It is an important quantity in finance as
market convention is to always quote implied volatility using
the Black-Scholes model. It is often represented as a function
of strikes and maturities (volatility surface).

Because the previous formula is not invertible, we use numer-
ical iterative methods to find the implied volatility.

1.3 The Heston model

The Heston model is one of the multiple extensions of the
BS framework to deal with non-constant observed volatility
(smile or skew). While the BS assumes the volatility to be con-
stant, the Heston model assumes that the volatility follows a
stochastic process correlated with the price of the underlying.
It is expressed under the risk neutral measure as :

dS; = rSidt + /v S, dW?

dve = K(v — v)dt + ¥,/ v d W,
d(W*, W) = ps,dt Sa=5, V=%

A PDE for option price can also be derived by a martingale ap-
proach where the price depends on t, S; and v;. The observed
implied volatility shape or market option prices can be repro-
duced by varying the Heston parameters {k, p,7, v, }. The
parameter 7y usually impacts the kurtosis of the asset return
distribution, and the coefficient p controls its asymmetry

1.4 Classical pricing methods

For European plain vanilla options, a closed form solution ex-
ists as follow for a one-asset call price in the BS model:

V(t,So) = SeN(dy) — Ke™"T~ON(dy)

with : dy = ®E/ 02N and = oy — 0/ T~ ¢

When no analytical solution exists, a numerical method is
needed to solve the pricing equation. There are three main
categories of numerical methods : Finite difference, Monte-
Carlo and numerical integration.

While the finite difference method solves the pricing PDE
numerically, Monte-Carlo and numerical integration methods
rely on the Feyman-Kac representation Theorem which says
that the solution of a parabolic PDE can be expressed as a
conditional expectation under some measure Q, In the case of
European option, the price can be written as the conditional
expectation of the discounted terminal payoff under the risk
neutral measure:

VIt,S) = EX[e™ " W(T, 57)] = T f (T, Sr)f (Sr|S)dSr
R

The Monte-Carlo method approximates the conditional ex-
pectation form by simulating many paths of the underlying,
evaluate the payoff V(T, St) for each path and then take the
mean of discounted payoffs as an approximation of the op-
tion price. The convergence rate is in O(1/v/N) where N is
the number of paths. The numerical integration estimates

the density function in the second integral form. To gen-
erate prices under the Heston model for our study, we use
the COS method developed in [7], a variant of Fast Fourier
Transform method which consists in replacing the density
function in the integral by its Fourier-cosine expansion and
use the known characteristic function to evaluate the series
coefficients.

For an American option paying g(7) if exercised at time 7 < T,
the risk neutral price is given by the optimal stopping problem
(for complete market):

V(D)= sup EX[e”""~0g(r)]

t<T<T

and it verifies the following dynamic programming principle:
V(t) = max [g(t), EX[e~"“g(t + d1)]]

The price can be computed using the least square Monte-
Carlo algorithm. This algorithm addresses the dynamic pro-
gramming problem by simulating many paths of the under-
lying, then fitting, backward recursively in time, regression
models that predict continuation values (values of the option
at the next step previously calculated) given the current asset
prices with a polynomial basis expansion. More details about
the algorithm can be found in ref [8].

1.5 Numerical methods for implied volatility

Classical iterative methods to approximate the solution of (1)
include the Newton-Raphson method, the bisection method
and the Brent method. In the case of Newton-Raphson, start-
ing with an initial guess o;;, the following iterative update is
performed until a criterion is satisfied :

g ot V(a';) e me’ker
o aV/do;

where the denominator is the Vega of the option.

The Brent’s method is another root finding method more ro-
bust which combine the bisection method, the secant method
and inverse quadratic interpolation. More details can be
found in [1].

2 The machine learning approach

Using Machine learning applied to derivative pricing or model
calibration has seen increasing interest in recent years, and
both practitioners and academics have worked on the sub-
ject.

In the machine learning approach for pricing, we approximate
the pricing function by a Machine learning model. The model
is trained on data generated from classical pricing methods
in a supervised learning fashion. More precisely, it consists in
the following steps :

« Generating a set of the financial model parameters us-
ing random sampling methods

« Use methods of section 1 to compute the price of the
option for each parameter

« Split the above dataset into a training sample and a test-
ing sample in a proportion 70% 30%.

» Train the machine learning to map the generated input
parameters to the option price using training data

« Use the trained model as the new pricer on the test set

Because we only use the machine learning model in infer-
ence mode for pricing, the calculation is expected to be much
faster than classical approaches.

In the paper [1], the authors treat the case of European op-
tion’s price under Black Scholes and Heston with neural net-
works. We will follow the same way but extend the study to
multiple-underlying European options (Baskets) and Amer-
ican options. We also test the Gaussian process regression
approach introduced in [5] and compare its performances
with neural network. We then focus on the implied volatility
computation with neural networks.

2.1 Neural networks

Artificial neural networks (ANN) are models inspired by bio-
logical neural networks. It can generally be described by three
levels of components: neurons, layers and global architecture.
Each neuron of a layer, called unit, is connected to each neu-
ron of the next layer and is associated with a learnable weight,
a bias term and an activation function o. More precisely, in
the case of multilayer perceptron architecture (MLP), a neu-
ron consists in the following three operations:

+ Calculate the sum of weighted inputs
« Addition of a bias

« Application of the activation function to the precedent
calculated quantity

Input Hidden Output
layer layer layer
Input 1
S Vi Output 1
Input 2 N/ -
P, Output 2
Input 3

Figure 1: The multi-layer perceptron

Let’s denote wfk the weight for the connection from the
kth neuron in the ([— 1)th layer to the jth neuron in the Ith
layer. We have the following relation:

a; =0 (Z w;kai" + bj) = J(zf) (1)
k

where a} is the output of the jth neuron in the [th layer.
The most famous activation functions are the following:

€ [0, +oo[
€ [0,1]

+ Relu: o(x) = max(x 0)

« Sigmoid: a(x) =

I+e—x

« Tanh: o(x) = 1+e__j: €[-1,1]

The use of non-linear activation function allows the model to
create complex mappings between the network’s inputs and
outputs. An activation has to be chosen in order to deal with
the following issue:

explosion or vanishing gradient: The bounded and smooth
nature of Sigmoid and tanh prevents the gradient to explode
but is subject to vanishing for high absolute input values mak-
ing the learning process slower.

Making clear predictions: by the nature of sigmoid and
tanh that tends to separate the outputs.

computaion efficiency: The Relu activation is faster to com-
pute and allows the network to converge faster

Training an ANN: the principle of backpropagation

Backpropagation addresses the problem of how a variation in
weight and biases impact the output error.

In order to learn, a neural network needs a routine to up-
date its weights and biases in the direction of minimizing a
loss function on the output which is generally a gradient de-
scent algorithm. In supervised regression problem the output
loss is often the MSE: L = 13~ | y(x) — a'(x) >, L being the
number of layers. More generally, if we express the output as
a function of the input and network parameters: y = f(x, ©),
0 = (W, by, ., W, b)), the training process is the following
optimization problem :

argming L(0)(x, y))

. The gradient descent is an iterative process that moves to-
ward loss function decrease and update parameters as fol-
lows:

{ We W-alt
dL
b+ b- agy

where « is the learning rate.
The backpropagation algorithm finds a way to compute the

partial derivatives dw and £ Starting from the output nodes

errors, knowmg a0 1t relles on the following chain rule (for a
single weight) :

aL oL 9z aL

I = atlaol a.1%
ow, 0z; 0wy 0z

In fact, backpropagation stands only for one training instance
(x, y), but the loss function can generally be expressed as the
average over losses of individual instances : L = %ZL L(x;)
where n is the batch size, making possible to update network
parameters with many instances.

Finally, training a neural network consists of initialize weights
and biases, then repeating for each batch:

« forward propagate: compute the output given an input
x using current weight and biases and formula (1)

« compute the output error
« Backpropagate the error
« Update weights and biases using the gradient

The weakness of neural networks is the difficulty to interpret
its results. Besides, they are usually sensitive to over-fitting
and need a high number of samples to be properly trained.

2.2 Gaussian process regression

Gaussian process regression (GPR) is a nonparametric kernel-
based probabilistic model which relies on Gaussian process.
A Gaussian process is a collection of random variables whose
any finite subset of this collection has a joint Gaussian distri-
bution. It is defined by its mean function m{w) and covariance
(kernel) function k(x, x').

Given a dataset {(X;,y;) | i = 1..n}, the relation between
each input and output for GPR is given by :

yi=fX)+ei e~ N0
Where f is a Gaussian process verifying:
k(X],X]) k(xlsxﬂ)
f~NOKXX) KX X)= = "
k(xns Xl) k(xﬂl Xﬂ)

The Radial-basis function kernel is the most commonly kernel
used and is defined as:

kix,x) = crfe xp(—)

where d is the euclidean distance and ithe length scale of the
kernel. This makes two output points y and y’ close in input
space highly correlated.

d(x x)

Starting from a prior distribution, training a GPR consists
in finding the most appropriate set of hyperparameters
© = {l,04,07} using the training data and leads to a pos-
terior distribution. The common way is to maximize the log
marginal likelihood function L(@) = In(p(y) which is
done by a gradient-based optimization method such as L-
BFGS.

Given the previous posterior on train dataset, for a new
set of observed samples X*, we infer their unknown values
f* = f(x}') using the following joint distribution for the pos-

terior :
y KX, X) + 02l K(X,X*)
H =N (0’ { K(Xs, X) K(X"‘,X)D

which leads to a conditional distribution :

X Xy ~ N, 5)

where the mean
i= KX OKXX) + 3]y
is the point estimate, and the covariance matrix
I = K(X*, X*) — K(X*, X)[K(X, X) + o211 7T K(X, X*)

is used as model uncertainty.
Alimit of GPR is that it usually not scale very well for high
dimensional datasets.

2.3 Optimization of hyperparameters

Hyperparameters are parameters that control the learning
process or define the overall model architecture. For Gaussian
Process regression, these parameters are automatically opti-
mized during training process but the parameters of the ANN
such as learning rate, batch size or number of neurons and lay-
ers need to be chosen in a way to optimize the generalisation
performance of the model. Usually, the optimization is per-
formed using a cross-validation score : the training dataset is
divided into p partitions (folds) and the model is successively
trained on p — 1 partitions and tested on the remaining one.
Then the score is averaged over test folds. Hyperparameters
that obtained the best score are used to train the final model.

The optimization of hyper parameters can therefore be
formulated as finding the the optimum of a function f :
‘H — R mapping a hyperparameter space to the set of cross-
validation scores (obtained for each possible hyperparameter
combination). Because f is expensive to evaluate (it involves
several model trainings), we evaluate f only for some points
of H. Here are three approaches to choose these points :

+ The grid search approach where we define a discrete
range of points for each hyperparameter then test all
possible combinations

+ The random search approach in which a random draw
of hyperparameter combination is performed a certain
number of times

+ The Bayesian optimization approach which is an iter-
ative approach that uses previously tested points to
help reducing the search space of better hyperparam-
eter combination.

In the paper [1] authors use a random search on a small
dataset. For our study, we decide to test the Bayesian ap-
proach.

As developed in [9], the idea behind this approach is to
optimize a model of f or a surrogate that is cheaper to eval-
uate. The algorithm is an iterative process which consists in
performing a numerical optimization on the surrogate func-
tion to find the next point where the true function f should
be evaluated. Previously evaluated points are used to update
the model on f.

The criteron that is optimized to find the next point to evalu-
ate x* is the following expected improvement:

y.
El(x) = / (v* = y)pmly|x)dy

where M is a probability representation model of f built using
previous observations and y* a threshold value. It can be in-
terpreted as a trade-off between staying close to the previous
optimal point and being in under explorer region.

The Tree-Parzen Estimator algorithm we use in our case
models p(x|y) and p(y) by the means of hierarchical processes
calibrated using initial input search space defined as proba-
bility distributions and previously observed values and then
use Bayes rule.

The Bayesian method has a better convergence in compar-
ison with Random search but is subject to local minima.

2.4 Pricing with machine learning
Data generation

The first step is to create a set of combinations of model, op-
tion and market parameters (strike, maturities, volatility, risk-
free rate, ...) which will be the inputs of the machine learn-
ing model. In this study, we use a uniform random sampling
on each parameter. Other methods such as Latin hypercube
sampling can be used to have better distributed data in the
whole parameter space.

For the multi-asset case (basket option), the Scipy imple-
mentation of the numerically stable algorithm of Davies &
Higham is used to generate random correlation matrices of
underlyings.

Once model parameters are generated, we compute the price
for each parameter combination using respectively the closed
form solution or Monte-Carlo method for European options
in the BS model, the COS method for European option in
the Heston model and the Least square Monte-Carlo method
(LSM) for American put option.

The pricing methods are implemented in Python using the
Numpy library. For the least square Monte-Carlo, we use a
linear least square regression on polynomial expansion with
the PolynomialFeatures method of scikit-learn. The American
option is approximated by a Bermuda option with 50 exercise
dates and the underlying follows a geometric Brownian.

The Basket option is a call on the index of kind /; = " &S
where we use equal weights.

It takes approximately 36s to generate 10 000 samples
prices for the basket option (10° paths) and about the same
time for call prices in the Heston model.

The table below summarizes the input and output data for
the supervised machine learning training for the various op-
tions and models tested.

European call option (BS)
Inputs | Moneyness: So/K € U[0.4,1.6]

Maturity (yearly): 7 € 14[0.2,1.1]

volatility: a € U4[0.01,1]

risk-free rate: r € U4[0.02,0.1]
Output | B-S price/K [0,0.85]

American put option (BS)

Inputs | Same T, 0, r: |
Initial price : So=1

Strike: K € U[0.4,1.6]
Output | LSM price (N = 10*) [0,0.8] |
European basket call (BS)

Inputs | Same T, r

Si/K,i=1.d: Si/K € U[0.4,1.6]
a'i=1.d: o € U[0.01,1]
P, ij=1.d: p e [-1,1]

Output | MC price/K (N =10%) [0,0.6]

European call option (Heston)
Inputs | same Sy/K, T, r

initial variance: vy € U4[0.05,1]
long-term variance: v € U[0.01,1]

reversion speed: Kk € U[0.01,3]

gamma: v € U[0.01,0.8]

correlation: p € U[—0.9,0]
Qutput | COS price [0,0.6]

Choice of model and hyperparameters

The Gaussian process regression is trained with a Radial-basis
function kernel and L_BFGS optimizer.

The ANN is a multi-layer perceptron (MLP) implemented
using Keras, a high level deep learning library implemented
on top of TensorFlow.

The weights and biases are initialized using a glorot uni-
form distribution. The mean squared error is used as loss
function. We use Adam as optimization algorithms which is a
combination of Momentum and adaptive Learning Rates and
which converge faster in general. Inputs are scaled using Min-
max scaling: Xscqled = ﬁ and a linear activation (identity
function) is used for the last layer

We decide to tune the following hyperparameters using
the Bayesian search for about 20 iterations (through Hyperopt
library) with the average mean squared error on 5 validation
folds as objective:

« Number of layers : 2 or 3

+ Hidden size : Choice in [40, 400]

« batch size : Choice in [32, 64, 128]

« epochs : choice in range [100, 300]

+ learning rate : log-uniform distribution [1.1074, 1.1073]

+ Activation function : [elu, relu, tanh, linear, sigmoid]

Then we analyze the points evaluated during the opti-
mization to choose the most appropriate one (trade off be-

tween complexity and performance) and retrain the final
model on the whole training set.

The models have been trained using different numbers of
generated data samples (taking 30% of samples for testing). In
a sake of simplicity and limited computer resources, we only
optimize MLP hyperparameters for the 10> samples case then
adapt the model for other cases using the early stopping cri-
terion.

Results

We detail below the results in the case Black Scholes Euro-
pean option on the test set:

Single asset European call option (BS)
samples model MSE (test set) MAE (test set)
N=10° MLP 5791077 599-10~*
N=10* GPR 2.70 -107¢ 7.48-10~*

MLP 1.81:10°°¢ 1.08-1073
N=5000 GPR 3.21-107¢ 8.37-1074
MLP 4.00-10°¢ 153-1073

model hyperparameters time cost (10°)
GPR - train: 13.47s
test: 0.65s
MLP hidden shape: (280, 280) train: 65.43s
activation: relu test: 0.162s
learning rate: ~ 1-1074
epochs: 230
batch size: 64

The performances are quite satisfying both in term of
mean squared error and mean absolute error. We notice a
slightly better performance for GPR in the case of smaller
dataset suggesting that this model can be more appropriate
for small datasets. Nevertheless, GPR does not improve its
performance and becomes time-consuming for higher sample
size while the MLP is still improving with more samples.

An analysis of the absolute errors across moneyness, ma-
turity and volatility range shows a worse performance close
to the money and close to each bound of these values. If the
former is due to more scattered data, the latter may highlight
worse prediction for points close or out of training data space
and raises the necessity to train the model on a sufficiently
wide input range.

son Tuwl.—..;u rmll:rlilll (\‘r-;r"unilw) !
Figure 2: Error across moneyness (right) and maturities (left)

for MLP (above) and GPR (below)

The following shows the performance for the other tested
options on the test set:

European Basket call on 4 underlyings (BS)

samples model MSE MAE
N=10* GPR 2411073 3.66:107°
MLP 1.48 -107° 2911073
American put option
samples model MSE MAE
N=10* GPR 6.81-107° 1.82-107°
MLP 4.15-107¢ 1421073

European call option (Heston)

samples model MSE MAE
N=10* GPR 6.05 1074 8.1.107*
MLP 3.84-1074 3.98.1073

maturity

The performances are obtained for the MLP with respec-
tively (170, 170) hidden shape for the Basket option, (280, 280,
110) for the American option and (220, 220, 120) for the call
under the Heston model. The training has been performed
using between 200 and 250 epochs. The time cost of predic-
tion is still competitive: around 1s for GPR and less than 0.1s
for MLP on 3000 test sample. The neural network model tends
to be better and less prone to overfitting for these cases.

Feature importance

Feature importance can be computed for models using the
mean decrease accuracy method : We successively randomly
shuffle each input variable and measure the decrease in model
performance (mean squared error criterion). Then, compute
the importance of each feature in a cross-validation fashion
as:

. 1 MSE” — MSE?
feat = — ToMeer
Nrest folds pEtest folds MSEf shuff led

The uncertainty of feature importance can also be computed
using the standard deviation over test folds and optionally
over multiple repeating procedure for different random seeds.

S 0K
to_maturity
init_variance

mean_variance -

) .-

reversion_speed =
gamma =

o e

0.0 02 04 06 08 10

K

sigma

r

00 02 04 06 08 10

(a) American put option (b) European call (Heston)
Figure 3: Feature importances obtained by mean decrease ac-
curacy method (MSE metric) over 5 folds for MLP

2.5 1V surface generation with ANN

In this section, we experiment the deep learning approach to
BS implied volatility surface generation for the Heston model.
The problem can be addressed in different ways. Authors
in [1] test the approach with an ANN trained on the out-
put of the ANN used for pricing. In [2], they learn the im-
plied volatility directly from model parameters / and money-
ness/maturities as inputs using uniform sampling. Following
the approach of [3], We show that a neural network can gen-
erate the complete surface through the learing map :

F:0 — {ogs(Ki, T))}ij

where a grid of moneyness / maturities is fixed in advance.
Note that with this approach we are free to define the grid as
fine as needed.

Input Heston parameters 6 = {vo, V,K, 7, p} are generated
by uniform sampling and the risk-free rate is fixed to zero.
Then, the Heston prices are computed using the COS method
for each parameter sample and each pairs moneyness - ma-
turities of the grid. Finally, the BS implied volatility is cal-
culated using root-finding method for each pair moneyness -

maturity. It takes approximately 0.74 sec to generate one IV
surface.

The following table shows inputs and outputs of the neu-
ral network :

Heston IV generation dataset

Inputs | initial variance: w € U[0,0.04]
long-term variance: v € U{[0.01,0.2]
reversion speed: K € U[1,10]
gamma: v € U[0.01,1]
correlation: p EU-09,-0.1]

Output | 8x11-length vector K € [05 — 15]
of os(K, T) T €[0.1 — 2.0]

We choose an MLP architecture with 3 layers for the network
and optimize hyperparameters using the Bayesian search ap-
proach. It gives the following results with a hidden shape
(120, 120,95) and 200 epochs (10° training samples and 1800
testing sample) where MSE and MAE are uniform averages
over the grid:

train cost test cost
85s 0.05s

MSE (test)
2.09-107°

MAE (test)
9.50-10~*

The figure below shows the relative error distribution over
the IV surface (difference with COS + Root finding values) :

Average relative error

01
03 100%
06
0.80%
0.60%
15
0.40%
18
20 0.20%

05 06 07 08 09 10 11 12 13 14 15
Strike

Maturity
a3

(a) Average relative error in %

034
R
030
0z

026

(b) IV surface generated by the MLP model (v, = 0.0062,
p=-0637=014,v=01k=6.1)

Figure 4
The table below shows the relative importance of Hes-

ton parameters computed with the mean decrease accuracy
method.

Parameter 7 p v K v

| Feature importance 0955 0981 0984 099 0.999

3 Calibration with ANN

In this section, we approach the application of artificial neu-
ral networks to the calibration of volatility model. We will
focus on the Heston calibration from IV. The cases of Bates
model and Rough volatility are treated respectively in [2] and
[3]. The author in [4] discusses the calibration of the Heston
model from prices.

3.1 Problem formulation

For a stochastic financial model M(©), the calibration is an
inverse problem which consists in finding the most appropri-
ate model parameters 8 (6 := {v, v,k,7, p} in the case of He-
ston) such as the price generated by the model corresponds
exactly to the observed market prices of liquid instruments
or the observed BS implied volatility surface. The calibration
procedure is essential in finance for risk management purpose
and to price OTC exotic derivatives.

More precisely, for a set of M observed market prices with
various strikes and maturities {V’”“(K;, T)i = 1,.,M} the
problem consists in solving the following :

M
argmin Y | VMO0, K, T) - V™ (K, T) [

bee

Or in the case of observed Implied volatility

m n
argmin Y | e (K, T) — o5 (K, T)
beo TG

Classical methods to solve this problem which is known to
be non-linear and non-convex include root-finding or stochas-
tic optimization. Many of them are computer intensive due
to pricing map or need to be initialized close to the optimum.
The ability of neural networks to learn non-linearity makes it

a good candidate to address the problem.

3.2 Calibration from IV surface

The calibration problem can be approached in several ways
with ANN. One can learn the inverse mapping :

F' o o (K, T}y — 6

either with market data or synthetic data using a pricer then a
root finding method to know in advance the true parameters.
Another approach is to use the ANN trained in the previous
section which maps the Heston parameters to the IV surface.
This last approach is developed in [3]. The principle is, start-
ing with the previous learned map :

F:0— {o5 (K.)}

we use the trained model at inference time to solve, for each

new observed 1V surface {JQ}“(K,—, T;)}ij the following opti-

mization problem:

f:=argmin} | f(w,0.K, T) — ope(K, T;) |

#€6 iy ja

where f(w,8,.,.) is the output of the previous MLP on input
@ with fixed trained parameters w.

This optimization can be solved by a gradient-based method
such as L-BFGS using the Jacobian extracted from the ANN,
or gradient-free methods more adapted to non-convex ob-
jective function such as differential evolution. The second
method might be more appropriate due to the nature of the
calibration mapping which is not guaranteed to be C' and the
objective function can be subject to many-to-one problem:
two different sets of parameters may result in the same IV
surface leading to potential local minima.

We test this approach using the same test set as in section
2.5. We perform the optimization with differential evolution
on 100 samples of the test set and restrict the search space
to the initial Heston parameter range. It gives the following
error performance for each parameter :

H Parameter Yo v K 5y P ‘
MAE 9.13-107% 886-107* 0.147 1551072 298.1072
MAPE 28.96% 081% 2.33% 4.8% 7.8%

The method of the inverse learning map has also been
tested (IV as input and Heston parameters as output) with
both MLP network and Convolutional network (CNN). The
last one has the advantage to preserve spatial information in
data. We have found this approach to be faster than the pre-
vious optimization one with our configuration. In this case, a
min-max scaling is also applied on output values. We use the
same dataset as previously (10000 train samples and 1800 test
samples) and use the following architectures :

+ MLP: hidden shape (100, 100)
« CNN: one convolutional layer with (2,2) kernel size, 32
filters and a fully connected dense layer of size 200

Models are trained using 150 epochs, a batch size of 64 and a
learning rate of 5- 107,
The table below shows the performances on the test set

MLP vy v K ¥ p
MAE 7.22-107% 114-107% 0101 127-107% 3691072
MAPE 22.23% 0.99% 1.82% 9.46% 12.53%
CNN v v K b p
MAE 275-107% 153-107% 011 1.08.107%7 39.1072
MAPE 9.77% 1.3% 238% 7.09% 127%
|| Prediction cost: MLP: 0.1665 CNN: 0.215s |
i V.0 i o gamma
2800 ., | 400
Booo| ¢ 201 2w,
¢ : vt 2001
ga001 3 100 Wt
3200 i -l . ig% 100 { l
0 E - . 0f | ot

—]:0 —68 —{;6 —0‘1 —62 ﬂﬂD D‘ZS 0’50 D}S II'JD

22 v 300§ kappa

E | e 2001

5

2101wy

g

E Y $ o '« | 1001

g | o 1.1,

0l %5 01 Mt eate |
005 010 015 020 7 4 6 8 10

Figure 5: Error distribution across parameter range for CNN

Conclusion

In this paper, we have discussed several applications of ma-
chine learning in derivative modelling and found that it is
promising in terms of computational aspect and precision
Better results were obtained by the use of neural networks on
high dimensional datasets for pricing and they turns out to be
a good approximation of financial models. All these methods
can be easily extended to more complex models such as rough
volatility or Levy-based models. Also, more input variables
could have been incorporated such as dividends or other mar-
ket data to bring additional financial knowledge. The Greeks
computation can also be done by extracting the gradient in-
formation from the neural network. Besides, in this study,
machine learning algorithms have been trained on CPU but
the computation time cost can be highly improved using GPU
which is possible with neural networks.

However, a disadvantage of the machine learning ap-
proach might be an absence of confidence interval which is
an important quantity when approximating an option price
with a numerical algorithm. The interpretability of neural net-
works might also be questioned in a risk management context.

Our objective was to accelerate the pricing or calibration
using model-based synthetic data for training but the use of
real market data can also be challenged in a model free set-
ting.

References

[1] Sander M.Bohte Shuaigiang Liu, Cornelis W. Qosterlee.
Pricing options and computing implied volatilities using
neural networks. 2019.

[2] Lech A. Grzelak Cornelis W. Oosterlee Shuaigiang Liu,
Anastasia Borovykh. A neural network-based framework
for financial model calibration. 2019.

[3] Mehdi Tomas Blanka Horvath, Aitor Muguruza. Deep
learning volatility a deep neural network perspective on
pricing and calibration in (rough) volatility models. 2019.

[4] Olivier Pironneau. Calibration of heston model with
keras. 2019.

[5] Sofie Reyners Wim Schoutens Jan De Spiegeleer, Dilip
B. Madan. Machine learning for quantitative finance:
Fast derivative pricing, hedging and fitting. 2019.

[6] Michael A. Nielsen. Neural Network and Deep Learning.
Clarendon Press, 2015.

[7] Fang Fang and Kees Oosterlee. A novel pricing method
for european options based on fourier-cosine series ex-
pansions. 2009.

[8] F. A. Longstaff and E. S. Schwartz. Valuing american
options by simulation: A simple least-squares approach.
2001.

[9] Yoshua Bengio Balazs Kégl James Bergstra, Remi Bar-
denet. Algorithms for hyper-parameter optimization.

A propos d’Awalee

Cabinet de conseil indépendant spécialiste du secteur de la
Finance.

Nous sommes nés en 2009 en pleine crise financiére. Cette
période complexe nous a conduits a une conclusion simple :
face aux exigences accrues et a la nécessité de faire preuve de
souplesse, nous nous devions d’aider nos clients a se concen-
trer sur I'essentiel, savoir leur performance.

Pour accomplir cette mission, nous nous appuyons sur trois
ingrédients : habileté technique, savoir-faire fonctionnel et
innovation.

Ceci au service d’'une ambition : dompter la complexité pour
simplifier la vie de nos clients.

«Run the bank» avec Awalee !

"

Contactez-nous

Ronald LOMAS

Partner
rlomas@awaleeconsulting.com
0662 49 0597

