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Introduction

The recent growth in hardware and data resources has made
the application of machine learning techniques omnipresent
in different fields. Machine learning has become an essential
tool for statistical quants (asset allocation and alpha genera-
tion) on the buy side but it is shown to be also very prominent
for hedging and derivative quants on the sell side.

One major application is the use of deep learning to hedge
and price financial derivatives. Greek-based approach is the
most common dynamic hedging strategy, it entails calcu-
lating the financial contract price sensitivities to variables
and parameters of a given model. In the Black-Scholes (BS)
framework, the sensitivities correspond to the partial deriva-
tives of a partial differential equation (PDE) which is obtained
in the continuous time limit At — 0 of a delta-hedged vanilla
contract. The elegance of BS PDE comes at the cost of non
realistic assumptions such as the continuous re-hedging or
the absence of transaction costs. However, in the “physi-
cal” option markets where the time step At > 0 is chosen
according to the re-hedging frequency, the option pricing is
argued to amount to an optimization problem that is sim-
ilar to variational methods of Hamiltonian mechanics and
stochastic optimal control in continuous time [1]. These al-
ternative approaches, known in the literature as the global
risk minimization, jointly optimize a sequence of hedging de-
cisions with the objective of minimizing the expected value
of a loss function applied to the terminal hedging error. With
the emergence of deep learning, neural network emerges as
a powerful tool to solve the above optimization problem. Re-
cently, [2] applied this approach using a deep reinforcement
learning (RL) algorithm in the presence of market frictions.
The general framework of RL is for an agent to learn over
many iterations of an environment how to select sequences
of actions to optimize a cost function. The deep hedging
algorithm trains an agent to learn how to approximate op-
timal hedging decisions by neural networks through many
simulations of a market data. In addition, numerical results
show that the training algorithm is able to effectively adapt
hedging policies (i.e. neural networks parameters) to different
stylized features of risky asset dynamics only by experiencing
simulations of the financial market exhibiting these features.

1 Methodology

1.1 Theoretical Framework

The financial market is in discrete time of N timesteps with a
finite time horizon of T years and known fixed trading dates:

T=={0=tg<t]<-..<fN=T}

We consider D + 2 liquid and tradable assets on the market
with D + 1risky assets and one risk-free asset. Let {IB,,}!,,N=0 be
the price process of the risk-free asset with B, := exp(rt,)
where r € R is the annualized continuously compounded
risk-free rate.

The risky assets include a non-dividend paying stock and
D liquid vanilla European-type options such as calls and puts
which expire on observation dates in 7.

Let {Sin}:ﬂ:} be the risky price process at the beginning of
each trading period where §;, := [S?,. .., SP] with 5 and s,
being respectively the price of the underlying and of the jtﬁ
vanilla option.

1.2 Optimization Problem

The objective is to find a trading strategy ¢ := {&n}io to
minimize our risk exposure to the derivative, where for n =
1,000, Ny, = (5§2:D}, 5&3}) is a vector containing the number
of shares held in each asset of the hedging portfolio during
the period (t,—1, t,]. 6@ and 5&3:0) = {5(2),...,6?} are re-
spectively the positions in the risk-free asset and in the D + 1
risky assets. Furthermore, the initial portfolio (at time 0 be-
fore the first trade) is strictly invested in the risk-free asset.
As each strategy 4, is Fi, -adapted for all 0 < n < N — 1, the
d strategy is said to be adapted.

Moreover, let {V}:}:;O be hedging portfolio values for a

trading strategy d where th is the value prior to re-balancing
at time f, :

V3= 0P8, + 8P B, n=1,...,N,

and VY = 5((,51 since the initial capital amount is assumed to
be strictly invested in the risk-free asset.
At maturity T, the value of the hedging portfolio is:

Vi=Vy +Hy
where:

« V¢ is the price the hedger charge at inception to risk
manage the contract till maturity T using the strategy

d.

.« HY = S éﬁfﬂ) - (8 = §,_,) is the wealth accumu-
lated from the strategy & through buying and selling the
hedging instruments to neutralize risk factors.

Note that the optimization problem solve jointly for the
price and the hedging strategy (3, V). A simpler approach
would be to take the price as an exogenous input and solve
for the optimal strategy & only. We adopt the simple approach
and solve directly for §* (Vy) that minimizes the hedging error

Zr— V9 =Zr — (Vo + Hy)

V, is given as an input and doesn’t depend on § anymore.
Zr is the financial contract payoff at maturity.

1.3 Approximating the optimal strategy by a
neural network

The role of neural network is to approximate the complex
functional that maps a contract to an optimal replication
strategy. Depending on the use case, several neural network
architectures can be used but they are all derived from the
basic feed forward neural network (FFNN).



1.3.1 Architecture
Feed Forward Neural Network

Let dy, d,...,d.,d € N, a feed forward neural network Fy :
R% — RY with L hidden layers of dimension d; and input
and output layers of dimensions d,, d respectively, is defined
as:

Fo(X):=00fi0...0f;

filX):=gWiX+b), [=1...L

where W; € R%*d-1 and b; € R4*" represent the weight
and the bias vector of the [ layer and g : R — R is a non-
linear function that represents the activation function.

0 : R% — R? is the output function which applies an
affine transformation to the output of the last hidden layer h;
and possibly also a nonlinear transformation with the same
range as fy depending on the output nature. The trainable
parameters @ is the set of all weight matrices and bias vec-
tors which are learned by minimizing a specific cost function.
Hence, the optimal strategy is equivalent to an optimal set of
parameters 0* :

o ="

Recurrent Neural Network

Recurrent Neural Networks (RNNs) are derived from a FFNN
by introducing a feedback loop: each hidden layer is a func-
tion of both an input vector from the current time-step and
an output vector from the hidden layer of the previous time-
step, which enables to exploit the temporal order of the in-
put data. More formally, as shown in figure 2], for an input
vector X, at time t,, the time-t, output of the hidden layer
is computed as h; = f(h;_,X;) for some time-independent
function f(W, U).
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Figure 2: RNN architecture

The feature vector at each time-step (re-balancing date) ¢,
is

X, = N =1,

m s
VO

§
Iog(.(_)}n),T—r ﬁ] n=0,...

and Fy outputs at each time step the position to hold in each
of the D + 1 instruments:

0. - {ég”, - 5&?]

The input X;, is a D+ 3 dimensional vector which contains,
in the same order, the logarithm of the D + 1 assets prices, the
time-to-maturity (T TM) and the normalized hedging portfo-
lio value.

Note that RNNs are usually used in supervised learning
paradigm, but in the context of deep hedging the RNN is never
explicitly told, during its training phase, the right hedging
decision at a given time-step. Instead, the RNN must learn
through trial-and-error from several simulations to dynam-
ically adapt its embedded policy (i.e trainable parameters)
with the objective of minimizing the expected hedging error
at the final time-step. It is actually a reinforcement learning
approach using RNN and not a supervised learning approach.

1.3.2 Loss function

The role of the neural network is to approximate the optimal
strategy function by finding the optimal set of parameters §
that minimize the hedging error Zr — V2. The hedging er-
ror is a stochastic variable given the the stochastic nature of
the training dataset. But to solve the minimization problem,
a deterministic quantity is needed. This quantity must be co-
herent with the human risk perception ( e.g the risk of two
portfolios together cannot get any worse than adding the two
risks separately). Measures satisfying this criteria are called
coherent risk measures. Usually a more general class of mea-
sures called convex risk measures are used.

We choose to quantify our stochastic hedging error in an
L(P) space using the quadratic loss function which penalizes
equally losses and gains.

The optimization problem is then formulated as:

0" (Vp) := arg méinIE [(ZT —(Vo+ H, )2}

where Vj is the given contract premium.

The premium V; is supposed to be the contract’s fair hedg-
ing price. In case it is unknown, the optimal premium V; will
be the one minimizing [3] the function:

V, > E [(zr —(Vy+ H,‘z,“’“)f]

Then the pair ( 5’,5(\/0*)) solves the joint optimization prob-
lem of finding an optimal strategy 4 and its premium V.

Moreover, the derivative of the function is null at the op-
timal point Vj :

E [zr Vv Hff"ﬂ"] -0

Hence, the final profit and loss (PnL) distribution is ex-
pected to be centered around 0 if the given V; is the right fair
price. Otherwise, the distribution would be centered around
the difference between the given input price and the true fair
price. The fair price is then the byproduct of solving for the
optimal hedging strategy regardless of the initial capital.

Note that, the adopted approach is a basic mean-variance
optimization. But many other convex risk measures can be
considered depending on the risk aversion of the hedger. Con-
ditional Value-at-Risk (CVaR) is such an example related to
the more general quantile hedging approach [4].



2 Application to  Black-Scholes

framework

2.1 Assumptions

The underlying stock S;, is the only stochastic required to gen-
erate the inputs X; . In the BS framewaork, the underlying is
assumed to follow a geometric brownian motion (GBM). A
sample of 100.000 simulated discrete GBM paths are gener-
ated as:

Se = Syexp ( - %azh O'WI)

with S, is the initial stock price, and N = 60 timesteps.
The real market drift is assumed null. The interest and div-
idend rates are both taken equal to zero. The pricing is un-
der the risk neutral probability. For numerical results, we
consider the simple case of hedging a short vanilla Put op-
tion, in the BS world (GBM dynamics with a constant volatil-
ity), by taking a short position in the underlying. The pay-
off reads Zr = max(K — Sr,0) with K the strike value. In
this case D = 0 as the underlying is the only required hedg-
ing instrument. This strategy corresponds to delta-hedging a
financial contract which is the argument behind the Black-
Scholes risk-neutral valuation. The trader takes position (sell
or buy) in the underlying at a given frequency each time step
(e.g At = 0.5day, 1day...).

The RNN results are bench-marked against the analytical
BS delta-hedging formulas. The analytical BS delta is calcu-
lated as:

log(£) + 10*(T — 1) 0z
oVT —t 98

A=N

with x — N(x) the cumulative distribution function (cdf)
of the standard normal distribution, F the forward value, and
T — t the time to maturity (T TM). In practice, the volatility
term o corresponds to the BS implied volatility (IV) which is
meant to be equal to the underlying realized volatility (RV)
through the GBM dynamics.

The difference between the two volatilities affects the fi-
nal PnL of a delta-hedged vanilla option portfolio value. The
BS robustness formula quantifies this gamma PnL leak as:

T
1
Pty = [ 2520V - RV) 0 S)
0

The gamma I/V(t, S;) measures the the second order sen-
sitivity of the contract to the underlying:

The error is due to using the A" = A(c = IV) for delta-
hedging instead of the true volatility delta A®Y = A(g = RV).
Note that this error cannot be eliminated even when delta-
hedging continuously as assumed by BS framework.

2.2 Numerical Results
The case IV = RV

Here, we assume the realized volatility used to generate the
synthetic market data (GBM) is equal to the implied volatility
used to compute the BS delta (/V = RV = 20%). In this case,
the hedging error is due only to the discrete re-balancing.

On average, the two strategies are similar as shown in fig-
ure 3| the RNN hedging portfolio (figure 5.c) is on average
closer to the final payoff at maturity Zr. This means that the
BS gamma PnL is higher than the RNN gamma PnL which is
due to the gamma of the BS delta being higher than the RNN
gamma (figure 5.b).
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(c) Hedging portfolio value over time vs av-
erage payoff Zr (premium P = 7.95%).

Figure 3: Average RNN strategy over time

A lower gamma means that the delta change (between
consecutive re-balancing dates) is lower with a RNN strat-
egy. This observation is shown in figure 4/which includes the
gamma bleed (the quantity dA = 'dS is plot instead of /).
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Figure 4: Gamma bleed

The actual delta is shown in figure[8 (more in figure9). The
RNN delta matches the BS delta overall with a slight differ-
ence far from the money which explains the observed gamma
PnL discrepancy. Note that, the RNN cdf (in orange) corre-
sponds more to a fat-tailed distribution’s cdf such as the t-
distribution than a BS gaussian cdf (in blue). This explains
the final RNN PnL distribution being fatter compared to the
BS PnL distribution as shown in figure[5| One explanation is
that the discontinuous delta-hedging might introduce jumps
between two re-balancing dates. Jump-diffusion models in
general lead to fat-tailed PnL distribution. Using risk mea-
sures that penalize extreme losses such as CVaR is required
in order to tackle this issue.
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Figure 5: PnL histogram IV=RV
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Figure 6: Delta bleed /V = RV

To conclude, the RNN delta strategy manages to converge
to the BS analytical delta strategy while adjusting for the dis-
continuous re-balancing constraint. While this constraint is
very realistic, it is not taken into account in the BS assump-
tions which makes the RNN strategy more practical.




The case IV #RV

In this setting, we consider an even more realistic scenario
where the implied volatility (/V = 40% ) is different from the
realized volatility ( RV = 20% ).
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Figure 7: PnL histogram IV # RV

Figure|7/shows the distribution of the final PnL. The hedg-
ing error is centered around the difference between the |V BS
price P!V (charged price) and RV BS price PRV (true fair price).
This positive PnL profit is due to overpricing the contract. The
actual variance-optimal hedging fair price is:

Vi = [E[PnL7] = Vo| = PV = (P"Y — PRY) = PRV

Re-training the RNN with the deduced fair price V; will
shift the PnL distribution (1st moment) back to zero while
keeping the same shape (higher moments).

Moreover, the RNN gamma PnL is actually similar to the
gamma PnL seen in the case IV = RV (figure|5) which is due
only to the discontinuous re-balancing. Indeed, the RNN nat-
urally hedge with the RV because its IV is simply the esti-
mated volatility from the realized simulation paths.

On the other hand, the BS gamma PnL is clearly fatter,
as it combines the discontinuous re-balancing with the con-
straint /V > RV . Indeed, the difference [V — RV amplifies the
discontinuous re-balancing hedging error as explained, ear-
lier, by the BS robustness formula. Unless the IV = RV, this
PnL cannot be reduced by re-hedging more frequently. The
RNN delta hedging has a clear practical advantage in this
case. However, increasing the frequency of hedging will in-
crease the size and the number of RNN timesteps which will
make the training more challenging as the architecture gets
bigger.
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Figure 8: Delta bleed with IV > RV

Conclusion

The deep hedging algorithm is capable of retrieving the an-
alytical BS delta hedging while adjusting for non-practical
assumptions such as the continuous hedging or the implied
volatility being equal to the future realized volatility.

The deep hedging PnL is independent of any assumption
about the RV through an IV. The frequency of re-hedging is
however a constraint for the deep hedging approach.

Although the deep hedging approach is model-
independent (free greek approach), it still relies on the the
training dataset. Training on real market data which is rep-
resentative of all possible regime switches might make the
approach totally model-independent. However, the limita-
tion is the absence of enough historical market data to use as
a training data source. Hence, the need for generative deep
learning methods to synthesize enough real training data.

An additional constraint would be the regulation require-
ments regarding the explainability of the appraoch.
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Figure 9: Delta bleed comparison IV=RV
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