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1 It is also referenced as the collateral rate adjustment for some practitioner. 

INTRODUCTION

The recent finance crisis has released the counterparty risk in 
the valorization of the derivatives. The difference between 
the evaluations before and after crisis is computed as x value 
adjustment (xVA). Due to the possibility of the counterparty’s 
default, the credit value adjustment (CVA) is firstly introduced 
into xVA. In order to cover this risk, the tendency is the trad-
ing with collateral. The cost of the collateral is referenced as the 
liquidity value adjustment (LVA) 1in xVA. Another consequence 
of the crisis is the absence of a unified funding rate (risk free). 
The refunding rate of the bank causes the funding valuation ad-
justment (FVA) as the third component of xVA. Consequently, 
we need to integrate the xVA (CVA+FVA+LVA) into the classic 
pricing PDE. In general, the counterparty’s default can be mod-
eled with three levels (independent, immersion and beyond 
immersion) of the dependency on the underlying price. In the 
chapter 1 and 2, we introduce briefly the general modelling of 
the default time and xVA modelling on a portfolio under the im-
mersion case. The annex gives more details on the adequate-
ness of the immersion case. In the last chapter, we give some 
numeric results under the dynamic Gaussian copula model. 

F/G FILTRATIONS

We consider a default free filtration F generated by a Brown-
ian motion. The filtration G is enlarged progressively from F 
by a default time τ with the indicator process Ht = 1 {τ≤t} that is,  
Gt = Ft ˅ σ(˅ s≤tHs ). We assume that it exists a pricing measure Q 
on the filtration G. 

In the filtration F, we suppose that the dynamics of the underlying 
price follows

where Bt is the (F, Q)-Brownian motion. From the no-arbitrage 
condition, the process rt in (1) should be the repo rate of the un-
derlying under the pricing measure Q. Under the hypothesis that 
the OIS rate is equal to the repo rate as before crisis, we denote 
the OIS rate by r to represent the repo rate. 

In the default-free period (before crisis), any derivative product 
with payoff/claim Ψ(XT ) at maturity T has the fair value at time t

, with Xt defined in (1). Actually, it is the probabilistic solution of 
the following classic Black-Sholes EDP,

In the filtration G, the behavior of the (F, Q)-Brownian motion Bt

will be changed under the influence of the information on the 
default time. Here, we assume

•	 The (F, Q) -Brownian motion Bt remains a semi-martingale 
with the canonical decomposition 
 

, where Wt is a (G, Q)-Brownian motion. So, the dynamics can 
be written in 
 

•	 The default time τ admits a G–predictable intensity. It can be 
decomposed in two part: an F–predictable process λt (pre-de-
fault) before the time of the default and 0 after the default.

 
Under the two previous assumptions, the relationship between 
the filtration F and the filtration G can be defined according to 
the three different cases

•	 Independent case, that is, the pre-default intensity process λt

is deterministic and γt ≡ rt.
•	 Immersion case, that is, γt ≡ rt.
•	 Beyond immersion case, that is λt, is a function of (t, Bt) and 

γt≠rt.
 For the non independent case, the impact bilateral between τ 
and Bt is given respectively by λt (no deterministic) and Δt. Under 
the pricing measure Q, the choice of the immersion case, that 
is Δt ≡ 0, will be justified in the next chapter and the credit risk/
counterparty risk quant focus on the modeling of the λt to treat 
the dependence between τ and Bt.

in F       (1)

(2)

(3)

in G

in G
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Chapter 2

XVA(CVA/LVA/FVA) – PDE MODELING

1 CVA PART

Let τ be the default time of the counterparty on the derivative 
product with the default free fair value Mt defined in (2). The 
t-time value Ut is the counterparty risky fair value for the bank. 
The no-arbitrage condition and the completeness of the market 
2give the (G, Q) -martingale condition on U(t, Xt ), that is,

where Ūt is the derivative value just after the default of the coun-
terparty. For the no collateral case, Ūt is given by3

with R the recovery rate (assumed constant). 

In the following part, the bank’s funding rate and the collateral 
rate will be involved in the fair value Ut.

2 FVA/LVA PART

A CSA (cash) collateralization schemas is used between the bank 
and the counterparty in order to mitigate CVA. We denote the 
collateral value posted by the bank before the default time τ by 
the process Γt and the xVA-PDE (5) can be derived 4from (4) with  
Ūt = R (Mt – Γt )

+ – (Mt – Γt )
– + Γt  after the default and Ut before 

the default

In the right of (5), the OIS rate rt is used as a reference for all the 
other funding rates. The rt 

C and rt 
F are the extra remuneration 

of the collateral and the refunding rate of the bank related to rt.

The xVA value Vt is given by Vt= Ut–Mt, where Ut and Mt are  
respectively the solution of the linear EDP in (3) and (5).

We remark that if γt ≡ rt holds in (5), the xVA-EDP on Vt will be 
simplified substantially. Actually, this is the case if we consider 
the underlying can be refunded by the repo market.

3 THE CHOICE OF γt

Recall that under the pricing measure Q, the drift part γt in the 
dynamics of Xt should be the repo rate. Furthermore, we as-
sumed the repo rate is always close to the OIS rate, that is, 

or equivalently γt ≡ rt. In this case, the XVA-PDE is given by

V(T, .) = 0      (6)

This is a linear PDE, thus the probabilistic solution is

, where Mt, Γt, and λt are the function of the (t, Wt ) with dXt / Xt 
= rtdt + σdWt.

For the independent case, the immersion case for γt≡rt holds ob-
viously. For the beyond immersion case, we show the existence 
of the pricing measure such that the process λt does not change 
and γt ≡ rt holds in Annex. Consequently, the immersion case is 
adequate for xVA modelling as the dependence is expressed in 
terms of λt. 

In the next chapter, we will give the numeric results associated to 
xVA value computed on the dynamized Gaussian copula default 
time model (DGC model) under the pricing measure.

2 The left part in (4) is derived from Ito’s formulas and the right part is the              
(G-Q)-increment rate of the auto financed porfolio.
3 x = x+ – x–

4 The right part in (5) is the (G-Q) -increment rate of the auto financed 
porfolio in our finding environement (See Vladimir Piterbarg).

CVA FVA LVA

++

(4)

(5)

in G

(7)



Correlation ρ 

λ0 = 200bp
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Chapter 3

NUMERICS :

In this chapter, we use the dynamized Gaussian copula model 
to model a default time and τ an underlying price process Xt. 
They are respectively generated by a bi-variate Brownian motion  
B = (B1, B2) with a constant correlation ρ.

•	
•	  

The details of DGC model is given in Annex. The call option on 
the underlying can be evaluated by the Black-Sholes formulas 
before crisis, for example M0 = 1.0266, for X0 = 2, Strike = 1, r = 0 
σ = 0.5 Matury = 1. We will show the xVA value on this call option.

The Monte-Carlo simulation of (7) needs:

•	 The markovian process in (7) is a bi-variate Brownian motion 
B = (B1, B2) in DGC model.

•	 The pre-default intensity process λt is in function of (t, Bt
1) 

given in (10).
•	 The underlying price Mt is given by the Black-Sholes formulas. 

The collateral Γt is taken by two case Γt = Mt and Γt = 0 and the 
OIS, the collateral and the funding rate are constant in this 
numeric test.

•	 Γt = 0 

With our funding environment r = rf = rc = 0 and recovery of counter-
party risk is assumed at 40%, we have the following CVA result of 

.

λ0 is given as a DGC model parameter for the level of the intensity 
of τ. The CVA value is determined by the parameter λ0 and the 
correlation ρ between the underlying price (exposure) and the 
default risk as show in figure (8).

•	 Γt = Mt  

With r = 0 and, we have the following LVA result of

			    

Figure (8): CVA versus correlation parameter ρ in DGC (Monte Carlo with 
10000 scenarios)
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Tables (9): LVA in fully collateral case (Monte Carlo with 10000 scenarios) 
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The xVA value Vo is dominated by the collateral rate rc . The 
funding rate rf is remuneration of the part U – M, which has the 
minuscule impact. The effective maturity T˄τ decreases with the 
increasement of the intensity of the default time, the absolute 
value of xVA value will also decrease.

CONCLUSION

In this note, we have shown that the modelling of the counter-
party’s default time involves three levels of dependence with the 
underlying price. Under the pricing measure chosen by the repo 
market, the immersion case is suitable for xVA PDE. The dependence 
is only modeled by the intensity process. In particular, the  
correlation parameter ρ of the DGC model plays an important 
role to treat the wrong way risk on CVA. Actually, the case 
beyond immersion focus on what happens after the default time 
see N. El Karoui, so that it is suitable to deal with credit portfolio 
or gap risk. For the fully collateral trading, we can see the xVA is 
dominated by the LVA part while the CVA and FVA parts have 
little impact on the xVA value.
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A :  Dens i ty f ramework01

As the default time τ is a positive random variable, it is fully  
characterized by its survival function, that is, P(τ > t) , or equiva-
lently to the density function P(τ ϵ dt), when it exists. In order to 
establish the relationship between τ and filtration F, we use the 
F-conditional survival process Ft(v)  P(τ > v | Ft ) or the conditional 
density process ft(v)  P(τ ϵ dv | Ft ) to model the default time.

The intensity process of the default time can be deduced 
by the density process (see (10)). Consequently, the density 
modeling of the default time is a framework more general than our 
assumption in the first part.

The pricing filtration G is produced by the filtration F progressively 
enlarged by the default time τ, so for every t,

The predictable representation theorem in the filtration G is 
generated by two fundamental martingales:

•	 1. The (G, P)-Brownian motion Wt defined 

•	 2. The compensated martingale Nt defined as

     , with the pre-default intensity of τ

So, any (G, P)- Radon-Nikody-m density Lt can be written as a 
Doléans-Dade exponential driven by the (G, P)-Brownian motion 
Wt and the compensated martingale Nt

where the processes αt and βt are G–predictable.

In particular, the (G, P)-Radon-Nikody-m density Lt  =  1  –  ∫0

t
 Ls– 

Δs dWs defines a new probability measure Q on G such that

, where W̅ t is the (G, Q)-Brownian motion. Furthermore, the 
(F, P)-Brownian motion Bt remains the (F, Q)-Brownian motion, 
as the projection of (G, P)-Radon-Nikody-m density Lt on the  
filtration F is 1, that is E[Lt|Ft] ≡ 1 (See dongli wu).

Consequently, the (G,Q)-Brownian motion W̅ t  given by 

remains a (F,Q)-Brownian motion Bt, so the immersion holds  
between F and G under the pricing measure Q. Furthermore, the 
compensated martingale Nt does not change as it is orthogonal 
of the Wt, so the intensity does not change motion under the 
new probability measure Q.

ANNEX 

(10)



B:  A beyond immers ion 
case  w i th  dynamized 

Gauss ian  copu la  mode l

One considers a bi-variate Brownian motion B  =  (B1, B2) with 
pairwise correlation ρ in its own completed filtration F under a 
probability measure P. Let h be a differentiable increasing func-
tion from R+ to R with lims→0 h(s) = –∞ and lims→∞ h(s) = +∞. We 
defined the default time

, with f is a square integrable function with unit L2-norm. In our 
numeric test, we take f ≡ 1 and the horizon ∞ by 5 years. The 
time horizon plays a role of the volatility of the intensity.

The F-conditional survival process of τ is given as

, with Ф is the standard Gaussian survival function.

The (F, P)-density process of τ is given as

Let F be the Azéma supermartingale of τ, that is, Ft = P(τ>t | Ft ). 
The dynamics of f(v) and F are given by

 	  	              , 

with

The fundamental (G, P)-martingales:

The (F, P)-Brownian motions (B1, B2) remain the semi-martin-
gale with the following G-canonical decomposition of the B, for 
i=1,2,

, where (W1, W2) are (G, P)-Brownian motions. Precisely, we have

and the compensated martingale

, with the pre-default intensity of τ

The pricing measure Q such that the immersion property holds:

Let Lt = 1 – ∫0

t  Ls _ Δs
1 dWt

1 be a (G, P)-Radon-Nikody-m densityde-
fining a new probability measure Q. From Girsanov’ theorem, we 
can verify the

,where W̅ t
i are the (G, Q)-Brownian motion. Consequently, the 

(F, P)-Brownian motion (B1, B2) given by

remain the Brownian motion under the probability Q in the fil-
tration G. We recall that the intensity does not change motion 
under the new probability measure Q.
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We denote and , so


