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Summary: In this note (Part II), we first present the simulation process of returns in our 
GARCH-Copula approach. Using these Monte-Carlo (MC) type simulations, we formalize the 
estimation of two commonly used risk measures: VaR and Expected Shortfall (ES). We analyze 
the risk levels for chosen equally weighted portfolios over different horizons.  The MC method 
gives closer risk estimations with respect to historical approach over the less stressed period. 
Depending on circumstances, the model specification is crucial for delivering appropriate risk 
indicators.

AWALEE NOTES 2

Table of contents

1. Introduction										          3

2. Simulation process									         3

	 a. Uniform simulation								        3

	 b. Return simulation								        3

3. Risk measures									         5

4. Estimating portfolio risks								        5

5. Conclusion										          6

Reference										          6	

								      



1. INTRODUCTION
 
Following the note “Copula in dependence modeling and 
risk measure estimating for cross-asset portfolio - Part 
I: Model and Estimation”, we describe in this Part II the 
simulation process and its applications in estimating risk 
measures.

The measurement of risk is the core of risk management. 
Risk can be completely measured by probability distribu-
tion (if exists), which describes all the possible outcomes 
and their probabilities of occurrence. Nevertheless, it is 
simpler to describe the risk with one indicator. 

Commonly adopted by financial markets practitioners 
and regulators, the Value-at-Risk (VaR) gives us the loss 
level that will not be exceeded with a confidence le-
vel during a period. VaR has impressive advantages like 
easy understandability, wide applicability and universa-
lity. In the work of Artzner, et al. in 1999, they formalize 
some desirable properties for a coherent risk measure. 
Nonetheless, VaR do not fullfill one of these properties: 
sub-additivity, which means that a portfolio merged from 
sub-portfolios should have a risk amount not greater than 
the sum of the risk amounts of the sub-portfolios. This 
actually indicates that diversification should reduce risk. 

Since then, Expected Shortfall (ES), which gives the ex-
pected loss given that the loss is beyond a certain level, 
has been considered as a natural coherent alternative to 
VaR. Indeed, ES satisfies all the conditions for a coherent 
risk measure. ES begins to remplace VaR in many institu-
tions for risk management. More recently, the Basel Com-
mittee on Banking Supervision recommends remplacing 
VaR by ES for internal market risk models in the Funda-
mental Review of the Trading Book initiative (BCBS, 2013).

In this note, based on our GARCH-copula approach, we 
introduce the simulation process of returns (Section 2). 
By implementing this Monte-Carlo type simulation, we 
escape from the multivariate normality constraint, consi-
dering that the copula can construct scenarii from diffe-
rent types of dependance structure (other than Gaussian 
one). After the returns are simulated, we formalize the es-
timation of VaR and ES in section 3. Section 4 is dedicated 
to an empirical study of risk measures for some typical 
equally weighted portfolios. We also compare the results

of our approach with the historical approach of risk mea-
sure estimating. Section 5 concluds.

2. SIMULATION PROCESS

In this section, we describe the two-step simulation pro-
cess of returns. 

a. Uniform simulation

In the first step, by using the estimated bivariate copula 
model (Gaussian, Student-t or Clayton), we simulate two 
samples of uniform variates û1,t+k and û2,t+k with the de-
pendence structure being taken into account. Note that 
if we simulate returns for producing risk measures with 
a ten-period liquidity horizon, we will need to simulate 
k=1,…,10 uniform variates for each series. 

b. Return simulation

In the second step, the uniform variates are transformed 
into standardized residuals z1,t+k and z2,t+k by inverting 
their empirical cumulative distribution function (cdf). 
Knowing the information about σt, ϵt, rt, we can therefore 
forecast σt+k, ϵt+k, rt+k. In the one period case (i.e. k=1) for 
index i = 1,2, we have

(1)

(2)

For the k periods case, we just need to iterate this process 
to simulate the returns ri,t+k.

3. RISK MEASURES

By following recent changes in regulatory requirement, 
we estimate in this section the 99% VaR and the 97.5% ES 
for a portfolio investing in two assets.

In order to estimate the risk measures in different cir-
cumstances, we estimate the GARCH-Copula model for 
two different periods from our dataset: the nearest one 
year period (i.e. 01 October 2015 – 30 September 2016) 
and the stressed one year period (i.e. 01 January 2008 – 
31 December 2008).
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We estimate the model for different periods, with the aim 
of taking into account period-specific dependence struc-
tures. Moreover, considering that we want to compute the 
risk measures based on the last observation (i.e. 30 Sep-
tember 2016), the information about  σt, ϵt, rt is therefore 
given by their last observed values in our dataset.

For each of the 10,000 scenarios, we simulate a 10-day 
path of log returns for each asset (ri,t+1, ri,t+2, …, ri,t+10) as 
described in the previous section.

The 1-day-ahead log return is simply given by ri,t+1, whe-
reas the 10-day-ahead log return is calculated as:

(4)

Supposing the portfolio is fully invested with weights 
w1+w2 = 1, the log return of the portfolio rp is calculated 
from the log returns of assets (r1, r2) as follows:

(5)

In our case, we consider the equally weighted portfolios 
with two assets, thus w1 = w2 = 0.5.

The common used analytical methods for estima-
ting risk measures are limited in the multivariate nor-
mal framework. Our Monte Carlo simulation is built on 
GARCH-Copula model, with the advantage of taking into 
account the dynamics in the returns and in the conditio-
nal variances, as well as the flexible dependence struc-
ture which is not limited to the normal distribution (i.e. 
Gaussian copula). Our framework is flexible enough to 
simulate random scenarios from the joint distribution 
of different asset returns based on different choices of 
marginal distributions and various alternatives of depen-
dence structures.

As presented above, with the simulated portfolio return 
series rp , the VaR for a given confidence level  α is just the 
quantile of the asset return loss distribution. Note that 
the loss distribution is given by -rp. More formally,

(6)

where F-r_p
-1 denotes the inverse of the loss distribution. 

The ES of the portfolio at level α is defined as the condi-
tional expectation of the loss given that the loss is beyond 
the VaR level.

(7)

In our case, the confidence level α is given by 99% for the 
VaR while it is 97.5% for the ES.

4. ESTIMATING PORTFOLIO RISKS 

For the sake of simplicity, we consider several equally 
weighted portfolios. More precisely, we examine four 
portfolios as follows:

• Developed Market Equity (DM Eq.) and Euro Zone Sove-
reign bonds (EUR Sov.)
• DM Eq. and Emerging Market Equities (EM Eq.)
• EUR Sov. and Foreign Exchange EUR-USD (FX)
• EM Eq. and Commodity

We compute the two risk measures (VaR 99% and ES 
97.5%) for these portfolios over two horizons (1 day and 
10 days), by calibrating the model over two periods (2008 
and 2015/2016). Moreover, in order to give a benchmark 
for our Monte-Carlo (MC) method, we also use the histori-
cal method to compute these risk measures.

Figure 1: Risk Measures, period 2008

Notes: The chart on the top shows the 1-day 99% VaR and the 1-day 

97.5% ES based on two approaches (Monte-Carlo and Historical) for 

2008 (stressed period). The chart on the bottom shows the same risk 

measures for a 10-day horizon. Note that the scales are different for 

the two graphs since the 10-day risk measures are consistently lar-

ger than the 1-day ones.
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Figure 1 shows that the EM Eq. & Commodity portfolio 
and the DM Eq. & EM Eq. portfolio are the most risky ones 
since stock and commodity markets are more volatile 
than other markets. 

The MC risk measures are smaller than those based on 
historical approach for three out of four portfolios. This 
could be explained by the simulation process used in our 
MC approach. Indeed, the initial conditions of our simu-
lations are specified by the information of the last ob-
servation in our sample (i.e. 30 September 2016). These 
information (σt, ϵt, rt) do not reflect the stressed situation 
in 2008 even if the stressed dependence structure has 
already been taken into account. If we use observations 
in stressed period for initial conditions, our MC method 
could give more accurate estimations of risk measures. 

The 99% VaR and the 97.5% ES are rather close to each 
other in both approaches, with the later one slightly lar-
ger than the former one in 2008. This could justify the 
choice of 97.5% as the confidence level for ES considering 
his level is close to the VaR 99%.

If we look at the risk level between the two horizons, the 
EM Eq. & Commodity portfolio is riskier than the DM Eq. 
& EM Eq. for 1-day horizon, which is inversed in the case 
of 10-day horizon. This indicates that the horizon can 
change the relative riskiness between portfolios. 

In order to scale the daily risk measure to the T-day one, 
one can use roughly the rule of multiplying the daily ones 
by the square root of T. Take the DM Eq. & EM Eq. portfolio 
for example, the historical one day 99% VaR is 4.51%, mul-
tiplying by √10 gives us a 10-day VaR of 14.26%. However, 
the real historical 10-day 99% VaR is 20.63%. In our case, 
multiplying the 1-day measure by √T could largely unde-
restimate the 10-day risk level, especially over stressful 
period.

Figure 2: Risk Measures, period 2015/2016

		

Notes: The first sub-chart shows the 1-day 99% VaR and the 1-day 

97.5% ES based on two approaches (Monte-Carlo and Historical) for 

2015/2016 (the most recent period). The second one shows the same 

risk measures for a 10-day horizon. Note that the scales are different 

between the two. However, the scales of the corresponding graph are 

kept the same between Figure 1 and Figure 2 to better compare the 

risk measures between two periods.

Figure 2 presents the risk measures for the most recent 
one year period (2015/2016). Comparing to the stressed 
period (2008) in Figure 1, one can notice that the risk 
measures are much smaller in the 2015/2016 period, 
which is highlighted by the two estimation methods. This 
indicates that the recent period is less stressful than 
2008. The 99% VaR remains close to the 97.5% ES in both 
approaches. 

Different from the stressed period, we note that in the 
most recent period, the MC method gives lightly larger 
risk levels than the historical method. Considering that 
our initial conditions are collected from the end of this 
period, MC method gives relatively close risk estimations 
to the historical benchmark estimations.

Figure 3: Density of returns (Period 2008)
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Notes: This figure shows the density function of the 10-day returns 

for the 4 portfolios, based on two approaches: MC (Red line) and His-

torical (Black line), over the stressed period (2008). 

Figure 4: Density of returns (Period 2015/2016)

Notes: This figure shows the density function of the 10-day returns 

for the 4 portfolios, based on two approaches: MC (Red line) and His-

torical (Black line), over the most recent period (2015/2016).  

Figure 3 and 4 exhibit the density distributions of simu-
lated returns and historical returns for the four portfolios 
over the two periods. Globally, the two methods are closer 
for the less stressed period comparing to the period 2008 
for the reason explained above. 

The DM Eq. & EUR Sov. portfolio has a left fatter tail in the 
historical approach which is not really captured by MC 
simulation. The two riskier portfolios (DM Eq. & EM Eq. 
and EM Eq. & Commodity) have a distribution with bigger 
probability around the mean and thinner tails in the MC 
method with respect to historical method. On the other 
hand, the EUR Sov. & FX portfolio has a more clustered 
distribution in the historical method. These deviations 
indicate that the model needs to be better calibrated 
portfolio by portfolio, especially in terms of initial condi-
tions and marginal distributions.

5. CONCLUSION

In this part II, we presented the simulation process of 
returns in our GARCH-Copula approach and the related 
risk measures estimation. By re-estimating the model 
over two selected periods, we study the risk levels for 
the chosen portfolios over different horizons. We com-
pare results from the MC method to those from historical 
approach. The MC method gives closer risk estimations 
with respect to historical approach over the less stressed 
period since the initial conditions for the simulation are 
specified from this period. 

However, we are aware that the model should be calibrated 
case by case in terms of specifications in order to obtain 
more appropriate risk measure estimation. A more com-
plete application of copula approach is given in Bruneau, 
et al., (2015) who developed a non-linear risk factor model 
for large cross asset portfolio risk measuring.
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