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1. INTRODUCTION 

This study aims at developing a stochastic volatility model 
in order to determine the value of interest rate derivatives 
under the specific framework of negative rates. The 
objective of this paper is to show an interesting extension 
to the current volatility models used by market operators. 
In the following, we will take the case of swaption pricing 
as an example, that is a derivative product that consists 
in an option contract giving the right to enter into an 
underlying swap. We will study the necessity to develop 
such a model in the current financial environment. To this 
end, we will introduce the Free Boundary SABR model.

With the latest changes following the 2007 crisis, financial 
institutions are facing more challenges with an increased 
level of complexity. Among these, particularly noteworthy 
is the challenge of negative interest rates. In order to 
stimulate the economy, Central Banks have decided to 
lower the level of interest rates. Indeed, a lower level of 
interest means a lower cost of credit, agents have then 
more incentive to borrow money and use it to invest. Tra-
ditionally, a level of interest was considered to be equal to 
zero at the lowest. In the context of global financial crisis, 
keeping interest rates close (positive) or equal to zero 
can prove insufficient to stimulate investment. Lowering 
rates to negative values would then have a more efficient 
impact (money deposits become costful).

Negative interest rates levels have major consequences for 
the valuation of interest rate derivatives since their value 
depends on these underlying rates. As a consequence, 
volatility modeling becomes more tricky while it is a 
fundamental step in derivatives pricing. The main issue 
for market operators is to adapt volatility quoted on the 
market to negative rates. In the next sections, we will 
present how to overcome this issue by using the Free 
Boundary SABR. To do so, we will show all the necessary 
steps to build this new modeling framework.
The critical purpose of this study is to develop a robust 
and fast interpolator for volatility cubes that are exhibited 
on the market interest rates. This interpolator must also 
include a limited number of parameters in order to easily 
interpret their impacts and understand their dynamics 
and also to make the calibration easier.

2. PREVIEW

2.1. Observations

Let’s start with an observation taken from [3], by looking 
at the historical evolution of the Swiss Franc interest 
rates (CHF) see the following Figure (1):

w

Figure 1: CHF: Swiss Franc interest rates

One could notice that, for instance, the Overnight 
interest rate (the blue curve) reached sometimes −2%. 
Moreover, the level of interest rates sticks to zero for a 
certain period of time, which mathematically means that 
their probability density should present more or less a 
singularity in zero.

2.2. Negative Rates Handling

The classical method used nowadays by every financial 
institution consists in shifting the SABR (see equation 1), 
which will move the lower bound of Ft from 0 to -s. This 
is what has been introduced in the shifted version of the 
Arbitrage-Free SABR (cf. Appendix.E of [1]):

(1)

To do so, there are two alternatives. The first method 
consists in introducing the shift in the calibration 
parameters (α,β,ρ,γ,s), i.e. calibrate s as a parameter of 
the model as the other SABR parameters by using Le-
venberg-Marqualt algorithm on (α, β, ρ, γ, s). The second 
method aims at fixing the shift to −2% if we work, for 
example, on the Swiss interest rates. However the two 
methods present drawbacks, indeed:
• The first method doesn’t work as well as expected 
because the shift doesn’t introduce any new degree of 
freedom, actually the shift influences the skew in the 
same way as the elasticity coefficient β.
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• The second method doesn’t work either, indeed, fixing 
manually the shift could have a great impact in the pricing 
and hedging, because the interest rates could potentially 
drop down lower than the shift. This will result in a jump 
in the calibration parameters, translated by a jump on 
the Greeks. Thus, it will have two major consequences: 
forcing the traders to reserve a hedging P&L part and 
constraining the product price to be bounded from above 
(the swaption price in our case). This can lead to unattai-
nable market prices for the shifted SABR.

2.3. The Model

The Free Boundary SABR Model was introduced by Antonov 
(2015) and revisited in different versions of his paper (cf. 
[2] to [4]). Contrary to the standard SABR framework, this 
model aims at providing a natural extension to negative 
rates with the idea of deriving an exact solution for the 
zero correlation case and extending it to the general one 
with suitable approximations.

(2)

This model takes into account negative rates and presents 
a stickiness in 0 which is observed in the market (see 
Figure 1). This model also conserves the total probability 
(the norm) and the martingality (the first moment) which 
guarantees its arbitrage freeness. The β boundaries 
condition allows the forward rate to cross the zero point, 
indeed if we take β > 1/2 , the forward rates movement 
will decrease rapidly when approaching the zero point 
without ever reaching it (as the famous Zeno’s Paradox).

The idea of the derivation of the Free Boundary SABR 
comes from the current literature. It is actually based on 
a study regarding the probability density of the forward 
rate followed by a CEV process (see Brecher and Lindsay, 
2010 [7]), as well as different studies about the call 
time value of a forward rate following this process (see 
P. Carr [5] and Antonov, Proposition 1 [6]). Moreover, if 
we consider a Free-CEV process then we also know its 
probability density (see Antonov 2015 [2]), which allows 
us to get the call time value for the Free-CEV with the 
same calculus as mentioned before. Furthermore, we 
can notice that the call time value of the Free-SABR zero 
correlation process could be written as the expected 
value of the call time value of the Free-CEV process 
(see the following equation 3). Since the call time value 
of the Free-CEV is a one-dimensional integral, the call 
time value of the Free-SABR zero correlation will be a 
two-dimensional integral.

(3)
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With the integrated variance                 . First, we will 
search for an exact solution of the call time value for 
the Free-SABR zero correlation process and extend this 
to the general case by using a mapping toward the zero 
correlation through the Free-SABR parameters.
To do so, we will use a heat kernel expansion (see De 
Witt 1965 [8]) which is an asymptotic approximation (in 
maturity) for the parabolic PDEs.

Before getting directly to the Free-SABR implementation, 
let’s get some intuition about the CEV process and the 
Free-CEV process.

3. INTUITION ON THE CEV MODEL

3.1. The CEV Model

Let’s consider the following CEV model:

(4)

The associated Forward Kolmogorov PDE is
with p the probability density associated to F. One notices 
that fixing the SDE alone doesn’t give a unique solution. 
Indeed, there exists two main solutions, the absorbing 
one and the reflecting one. Thus, we must add a boundary 
condition on zero to uniquely define the solution.

Moreover, as it was mentioned before, one needs to 
choose β < 1/2 to get the existence of the reflecting 
solution (see Feller Classification [9]).

According to the literature (see [7] or p.4 of [2]), if we 
choose ν = 1 for simplification, the absorbing and 
reflecting densities are defined as follows:

(5)

For                         , F0= f0 with            , q  ,= f^(1-β)/and Iν(x) is 
the modified Bessel function of order ν.

Thus, the absorbing and reflecting asymptotic densities 
at zero are:

In order to study the arbitrage freeness, we calculate the 
conservation of the norm ∂_t/∂t (∫_0^  and of the first 
moment (martingality) ∂_t/∂t (∫_0^(+ . 

To do this, one should use an integration by parts relying 
on the Fokker-Planck equation. 



The results  are in the following table 3.1:

Absorbing Solution Reflecting Solution

Norm Conservation No Yes

First Moment Conservation Yes No

Table 1: Summary of properties of absorbing and reflecting solutions

We notice that the reflecting solution preserves the total 
probability but not the martingality and the absorbing 
solution preserves the martingality but not the total 
probability. This means that, in order to have a correct 
financial process, we must keep a part of every solution 
and that is why we must choose β ≤1/2 in the first place.

3.2. The Free-CEV Model

(6)

According to [2], the solution of the Fokker-Planck 
equation associated to the PDE above (6) that satisfies 
the initial condition p(0,f)=δ(f-f0) and guarantees the 
norm and first moment preservation could be written 
explicitly in terms of absorbing and reflecting solution 
for the CEV Model, as:

(7)

3.3. Numerical Results

In the following experiment, we will show the behavior of 
the Free-CEV, the absorbing solution and the reflecting 
one; moreover, we will note the β effect on those 
solutions around the critical point zero. Let’s start with 
the following experiment parameters.

Parameter Symbol Value

Rate Initial Value F0 50 bps

SV Initial Value ν0 0.6 F0
1-β

Skews β 0.1 and 0.25

Maturities T 3Y

Table 2: Setups for the Free-CEV Tests

On the following figures below (see 2 and 3), we notice 
the spike presented by the Free-CEV, which represents 
in a way the stickiness of rates at zero in the market 
as observed in the Figure (1). We know that the density 
around the critical point zero is divergent with p(t,f) ~0f -2β 
which is the result of the presented spike, and to be more 
precise, it is a spike and not a delta singularity, according 
to the Riemann integral convergence condition on zero 
and due to -2β > -1.

Another point is to remind that the absorbing density of 
probability has an asymptote in zero of f 1-2β which means 
that it doesn’t diverge at all. 
Furthermore, as we already said, the absorbing solution 
doesn’t conserve the norm, so if we have to work with it 
alone, we should add a delta in zero to conserve it, which 
is not the case here, since we also have the reflecting 
solution part. 
Moreover, the reflecting solution has an asymptote at 
zero of f -2β which means that it is responsible for the 
spike in the Free-CEV process at zero. 

Finally, we notice in the figures below (see 4 and 5) that by 
increasing β from 0.1 to 0.25, we get a bigger spike at zero 
which is expected by the asymptotic study.

Figure 2: β = 0.25 

Figure 3: β = 0.1
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Figure 4: β = 0.25

Figure 5: β = 0.1

4.IMPLEMENTATION OF THE FREE SABR

Let’s consider the following set of parameters:

Parameter Symbol Value

Rate Initial Value F0 50 bps

SV Initial Value ν0 0.6 F0
1-β

Vol-of-Vol γ 0.3

Correlations ρ -0.3

Skews β 0.1 and 0.25

Maturities T 3Y

Table 3: Setups for the Free-CEV Tests

4.1. The Zero Correlation Case

In the zero correlation case of the Free Boundary SABR, 
the call time value is given by:

(8)
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With

(9)

(10)

And

Since all the simulations are done with Matlab, we have 
come across a snag, because Matlab doesn’t have a 
functionality that calculates directly double integrals 
(see equation 8) with variable bounds (here is s, that 
also varies in terms of the strike). So, in order to imple-
ment this double integral, we started by implementing a 
one-dimensional integral nested in another one-dimen-
sional integral. But first we implemented the integral 
(t,s) →G(t,s) by using the indicator function 1u>s to fix the 
bounds and a Gauss-Hermit because of the weight of e-u2  
in the integral.

However, this quadrature didn’t work, we found out that it 
was due to the presence of the cosh(u) term. Indeed, this 
first implementation doesn’t answer correctly the check 
of having G(t,0) = 1 for every t. This last result comes 
from the fact that:

With d the hyperbolic distance in H 2 (the hyperbolic 
Poincaré plane) and GMcKeanKernel is the McKean Kernel 
function which preserves the norm.

For this reason, we used a Gauss-Legendre Quadrature, 
by having previously used a u → arctan(u) variable change 
to reduce the integral to a bounded interval. Even so, we 
still got instabilities in cumulative and density calculus, 
this comes from the fact that the Gauss-Legendre 
discretization grid points subtly changed with the strike. 

In fact, this was due to the use of an indicator function 
1u>s in our calculus that removed or added some 
Gauss-Legendre grid points every time we changed the 
strike (it changed directly the s variable). Finally, in order 
to resolve this last matter, we used a u → u - s variable 
change and the appropriate trigonometric formula to 
simplify cosh(u) - cosh(s).



4.2. The General Case

Let’s consider the general Free Boundary SABR process 
as defined in 11. The idea is to consider a new process 
F  that is a Free Boundary with zero correlation, defined 
with the tilde parameters and satisfying:

(11)

With the Heat Kernel Expansion (see Paulot 2009 [10] or 
Labordère 2008 [11]) we get the following mapping:

in order to avoid non-smooth behavior around F0 = 10K

• A special attention should be given to the ATM case. 
Indeed, in this case, we have to put:

(12)

4.3. Numerical Results

By considering the following set of parameters:

Parameter Symbol Value

Rate Initial Value F0 50 bps

SV Initial Value ν0 0.6 F0
1-β

Vol-of-Vol γ 0.3

Correlations ρ -0.3

Skews β 0.25

Maturities T 3Y

Table 4: Setups for the Free-CEV Tests

We get the following results (see figures 6, 7 and 8) with 
the general Free Boundary quadrature algorithm imple-
mentation.

Figure 6: Density of the Analytical Free Boundary SABR

Figure 7: Cumulative of the Analytical Free Boundary SABR
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Figure 8: Call Time Value of the Analytical Free Boundary SABR

And finally, to confirm the shape of the analytical result, 
here is a Quasi Monte-Carlo simulation using Sobol 
sequences (see figure 9), with N = 512 space steps and 
M = 100,000 paths, done with simulating (with an Euler 
scheme) the Bessel squared process Xt.

(13)

So

(14)

d

Figure 9: Density of the Quasi Monte Carlo Free Boundary SABR

5. CONCLUSION

We could notice from this study of the Free Boundary 
SABR several observations:

The first point to notice is the stickiness in zero which 
was expected from the Free Boundary SABR Model, since 
this represents one of the market observations.
Secondly, we see that the forward rate has many patterns, 
one that could go to the high values with low probabilities, 
another one is to stick to the spot with a high probability. 
On the other hand, if the forward rate goes left, there 
are two cases, either it will stick in zero with spike of 
probability or cross this zero point to negative rates with 
low probabilities because of the thick tail.

The delta of the Free Boundary SABR is smooth 
everywhere.

The Gamma of the Free Boundary is smooth everywhere, 
except on zero, indeed:(∂^2 βCallβ_FreeBound, however 
we could avoid this inconvenience by using a finite 
difference method with steps of about 1 to 5 bps.

At the opposite of the Free Boundary that presents a 
zero skew of implicit volatility in zero (strike), the Free 
Boundary SABR Model can control this skew thanks to its 
correlation coefficient ρ.

The Free Boundary SABR is a quite good model but its 
arbitrage freeness could be questioned for very long 
dated options (for example 30 years). In this case, the 
mapping for doing the expansion doesn’t hold anymore, 
which means that this model is near arbitrage free. 

For this reason, A. Antonov recently introduced a new 
model: the Mixture SABR ([12]). It is a weighted sum of 
the Normal Free Boundary SABR and the zero correlation 
Free Boundary SABR, adding more degrees of freedom 
without losing in computation time because the Normal 
Free Boundary SABR adds just one-dimensional integral 
to be calculated. This last model is Arbitrage Free by 
construction since it is a weighted sum of two Arbitrage 
Free Models.
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