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The question of time series modeling is particularly crucial 
in finance, since the price of an asset is, by definition, a 
time series. In order to devise promising models, strong 
mathematical tools are needed to cope with those time 
series while respecting some of the basic stylized facts 
of financial time series, such as non-stationarity or non-
linearity. Some of those tools are well-known insofar as 
they have been used for many years; most of them come 
from the field of econometrics. Nonetheless the rising 
influence of Machine Learning now entices us to search 
for new ways of addressing the modeling of time series: 
that is what we intend to do in this paper, by seeing how 
Hidden Markov Models (HMM) can be applied when it 
comes to financial time series modeling.

Financial Time Series: from Econometrics to Machine 
Learning

Financial times series can easily be considered as the 
staple of financial analysis: the prices of an asset over a 
given period of time provide us with a sequence of values 
which defines such a time series. But, from a mathemati-
cal point of view, we would like to go beyond the data and 
to devise a model which can explain, and in some cases 
even predict, the evolution of an asset’s price.

For many years, this task has been achieved by using 
econometric methods [1] [2]. We present in this first part 
the most common methods, before seeing what their 
limits are.

Definition 1 (Linear Model)
The price of an asset is denoted pt with t ∈ N; for instance 
pt can refer to a daily observation. A linear model assumes 
that the price sequence evolves according to the following 
equation

where (ϵt) is a noise process, and α and β two parameters 
we need to estimate.

Under a given hypothesis concerning the noise process, 
this model consists in a mere linear regression. It is a 
pretty well-known and easy-to-use model. Nonetheless 
one of its shortcomings is precisely that it is clearly too 
simple: it can be useful in some very specific context, but 
it is unwise to assume that a financial time series can be 
properly represented via a linear equation. In order to 
take into account non-linearity, more complex models are 
possible, for instance:

Definition 2 (Non-Linear Regression)
We keep the same notations as above. We can consider 
the following non-linear equation:

In order to use those models, be it linear or non-linear, a 
regression needs to be performed so as to estimate the 
parameters α and β. The process is rather simple once 
the form of the equation has been fixed, but this latter 
question is much more difficult. Indeed financial markets 
are highly non-linear: catching all the non-linearity within 
a single equation sounds obviously impossible. But this is 
only the first of the three main difficulties we can find 
about econometric models.

The Three Issues
1) It is impossible to sum up all the financial market 
complexity within one form of equation;
2) A single model cannot work all the time, insofar as the 
patterns are actually dynamic;
3) A good model should rule out misleading information 
and be able to make a difference between long-term 
trends and short-term sideways movements.
To deal with financial time series modeling in a newer and 
more efficient way than the above-mentioned methods, 
we present a different framework, based on Hidden 
Markov Models (HMM).

From Markov Models to Hidden Markov Models

We begin with a few reminders concerning traditional 
Markov models before delving into the more complex 
notion of Hidden Markov Models.

Definition 3 (Markov Process)
Let S be a set of N elements, denoted by their index and 
called the states:

We consider a stochastic process (Xt) with t ∈ N. For each 
date t, Xt ∈ S. X is said to be a Markov chain when the 
state reached by X at t only depends on the state at the 
previous step t − 1. So:
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Moreover the Markov chain is said to be homogenous 
when the transition probability from one state to another 
does not depend on t :
	

As of now, we denote A = (aij)1 ≤ i,j ≤ N  the matrix of transition 
probabilities, i.e.

For the Markov chain to be fully defined, we need to know 
the initial probability distribution π across the states. So 
for 1 ≤ i ≤ N:

Therefore a Markov chain X is defined by its initial 
probability vector π and its transition matrix A.

We provide here a first naive approach so as to model 
a stock price using a Markov chain. We consider for 
instance a simple set of states, which aims at describing 
the main observations in the price movements:
 S = {1, 2, 3} where:
• 1 accounts for an upward move of the price; 
• 2 accounts for a downward move of the price;
• 3 accounts for a stable price;

Within this framework, if we admit that both π and A are 
known, it is very easy to compute the probability that the 
stock price follows a given sequence of states on a given 
number of days, for example on three consecutive days 
the sequence U = {3, 2, 3}:

Of course, the first difficulty of this model is to obtain 
the transition matrix A; we do not delve into this problem 
since such an approach is too naive, and that is why we go 
a step further and introduce the Hidden Markov Models.

For a Markov model, we directly assimilate the states 
and the observations, but for a HMM we have to make 
a difference: we still have a Markov chain, but it is 
considered hidden, so we do not have access to the 
hidden states, but for each state we know the probability 
that a given observation is output. Let us define a HMM 
formally.

Definition 4 (Hidden Markov Model)
We define O the set of possible observations, with NO its 
cardinal. We have to be very careful with the notations: oj 
refers to a generic element within O, and O(t) ∈ O is the 
random variable whose value is the output observed at t.
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We also consider X a Markov chain, which plays the role of 
the hidden Markov chain. We still denote the set of hidden 
states S, with cardinal N, π and A the initial probability law 
and the transition matrix. The states S = {1, . . . , N } are 
not visible, but we know the probability that a given obser-
vation oj is produced when the hidden state is k:

So a HMM is fully given by its initial probability law π, its 
transition matrix A,and its state-output matrix B ∈ RN ×NO, 
which does not depend on time, with:

We denote H a generic HMM: 
H =(π, A, B)∈RN ×RN×N ×RN×NO

The difference between a Markov model and a HMM is 
fairly simple: in the first case, we assimilate the states 
with the possible observations, whereas in the second 
case we make a difference between the states and the 
observations and we link the whole with a probability 
matrix B.

Figure 1: Representation of a simple HMM, with x the 
hidden states and y the observations

When it comes down to HMM, there are three pivotal 
questions that need to be addressed:
 • 1) Given a HMM H and a sequence of T consecutive ob-
servations denoted O = (O1 , . . . , OT ), how do we compute 
(efficiently) the probability that such a sequence of ob-
servations has been output: P O|H         ?

• 2) Given a HMM H and a sequence of T observations O, 
what is the sequence of hidden states S ∈ S which is the 
most likely?

• 3) Given a sequence of observations O, how do we adjust 
the HMM H in order to maximize P O |H       ?



Hidden Markov Models: how to Solve the Three 
Questions?
 
In this part we provide the reader with the three algorithms 
that enable to solve the three questions [3].

The first question is the simplest one. We consider a given 
HMM denoted H and a sequence of T observations O = 
(O1 ,..., OT ). We would like to compute in an efficient way 
P O|H        . Several methods are possible, but as we will 
see, some are more efficient than others. The intuitive 
method consists in writing:

and then computing each element of the sum. We do not 
give all the details of the computation, since the latter has 
an exponential complexity. We rather explain the forward 
algorithm, whose complexity is linear.

Definition 5 (Forward Variables) 
Considering a vector of T observations denoted O = (O1 , . 
. . , OT ), the forward variables αi(t) are defined by:

So αi(t) accounts for the probability of ending with the 
hidden state i after the first t observations. If we can 
compute efficiently the forward variables, then the 
desired probability is:

The forward variables can be computed by induction.

Theorem 1 (Computation of the forward variables by 
induction) 
To compute the forward variables we use the following 
equations:

The forward procedure is much more efficient than the 
first naive one: the latter has an exponential complexity 
with respect to T, i.e. O(T2T), whereas the forward 
procedure has a linear complexity with respect to T, 
O(TN2).
We now treat the second classic problem concerning 
Hidden Markov Models: given a sequence of obser-
vations O, what is the most likely sequence of hidden 
states S? Again several methods are possible, but we 
are interested in the most efficient, which is called the 
”Viterbi Algorithm”.
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Definition 6 (Viterbi Algorithm)
This algorithm aims at solving the following problem:

which is equivalent to solving:

To do so in an efficient way, we introduce the δ variables:

The computation is done by induction. At step 1, we have:

Then we use the induction equations to compute δ when 
t ≥ 1 :

When we reach T , we know that the probability and the 
optimal final hidden states are:

We can read the optimal sequence of hidden states from 
the end to the beginning by using the equation, for t < T

And so S* =(s1,...,sT)      .

This algorithm, although its formulation seems a bit 
complicated, is actually rather simple: the δ variables 
account for the most likely paths of size t that end with a 
given hidden state. To solve the overall question, we need 
to compute the maximum of the numbers δi(T) over i. The 
argmax gives the final hidden state of the optimal path. 
So the solution resides in the ability of computing the δ 
variables over t in an efficient way, which is possible by 
using the induction equations.

The third question is probably the most important one, as 
it aims at dealing with the learning process. We no longer 
consider a fixed HMM H, but we would like to modify 
H, which means π, A and B, in order to maximize the 
probability of a given sequence of observations O under 
the modified hidden Markov model H:

The question is at the center of the HMM theory.



Originally HMM were mainly used for handwriting 
recognition [4]: each letter, for instance a, can be seen 
as a HMM Ha, and by using many different handwritten 
a, we would like to improve Ha (third question) so that Ha 
maximizes the probability of a sequence of observations 
which is similar to the observations contained in the 
training set (the examples of the handwritten a). Then, 
when reading a text, in order to identify each letter in a 
word (this letter is seen as a vector of observations O), we 
use the first question to compute P O |H f d for all the HMM 
H we have trained (one for each letter in the alphabet). 
The HMM which maximizes this probability is considered 
to be the one associated with the letter, and thus we can 
recognize the written letter.

To train a HMM, we use the Baum-Welch algorithm. Here 
we provide the user with the basics of this algorithm.
First, we define the backward variables β:

Those β variables are very similar to the above-men-
tioned α variables: we can compute the β very easily by 
induction, and this computation can be used to solve 
the first question (backward procedure). The whole 
computation is based on the following equations:

Both α and β variables are necessary for the Baum-Welch 
algorithm. Indeed if we define the following quantities

they can be rewritten using the forward and backward va-
riables:

Definition 7 (Baum-Welch Algorithm)
This algorithm aims at solving the following problem, with 
a given sequence of observations O:
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To do so, we repeat the following process in order to reach 
the optimal values for the new HMM H′

			 

and for o ∈ O a possible observation:	
			 
			 
			 

We do not delve into all the details of those computations, 
insofar as it would lead us far beyond the scope of this 
paper. Just two things are worth noticing: Baum has 
proved that, either H is already the critical point and in 
this case H’ =H, or   dcsdcsdcsdccccccccl, showing H’ has 
a greater chance to produce the output O. To learn more 
about this algorithm, the reader can have a look at Markov 
Models For Pattern Recognition, by Gernot A. Fink [3].

HMM and Financial Time Series	
			 
In this last part, we suggest a simple way to use HMM to deal 
with financial time series by presenting a pedagogical model. 
We remind the reader the staple of HMM is that we make a 
difference between a hidden state, which is not visible, and 
an observation, which is visible but which does not give direct 
access to the hidden state.			 

We would like to identify three different regimes for a 
given asset: when there is a positive trend, a negative 
trend, or a flat period. To do so we considerer three HMM, 
one for each regime: H+ for the positive trend, H− for the 
negative trend, and H= for the flat period. For our three 
HMM and to keep our analysis as simple as possible, we 
consider a set O made of three different observations 
based on the price (pt)t  N

• O(t) = o1 accounts for a price going up, for instance 
when pt−pt−1 pt    with μ a fixed threshold;

• O(t) = o2 accounts for a price going down, for instance 
when    pt−pt−1> μ;

• O(t) = o3 accounts for a stable price, when none of the 
two above-mentioned conditions is fulfilled.

Let us denote N the number of hidden states. We choose 
an horizon T for a sequence of observations. At each date 
t (each day), we consider a sequence of T observations O 
= (O(t − T + 1), . . . , O(t)). 



Then, by computing the probability of observing such a 
sequence for the three HMM H+, H− and H=, we find the 
HMM which is the most likely to characterize the current 
period. This way we would like to know how to describe 
the current period (positive trend, negative trend, or flat 
period), and then adjust, for instance, our investments.

Nonetheless, to do that, it is necessary to train our HMM: 
we would like indeed that H+ for instance is good at iden-
tifying periods with a positive trend. To perform the 
training step of our HMM, we consider a training period 
[0,Ttr], and for each day within this period, we know the 
price of the asset: (pt)t∈[0,Ttr]

. Then, if we focus only on the 
training of H+, we have to identify across the training pe-
riod the sequences of 10 consecutive days we consider 
to be a period with a positive trend. Let us say we have 
identified such a period: [t+

initial , . . . , t+
initial + 9], with 0 ≤ 

t+
initial ≤ t+

initial + 9 ≤ Ttr .

The next step consists in defining the vector

We use it as the sequence of the observations of the 
Baum-Welch algorithm: we define H+ as the Hidden Mar-
kov Model which maximizes the probability of having such 
a sequence of observations. Since this algorithm needs a 
”starting” HMM which will be adapted, we can choose to 
start with a conventional HMM, for instance with uniform 
laws for π, A and B.

We have implemented this model on a simple numerical 
example. We chose to set the meta-parameters of our 
model to the following values: N = 5, T = 10 days. We 
work with a set of 200 observations of a simulated price; 
we generated those data using a classic log-normal dis-
tribution of the price, using various trends. As explained 
above, we divide our data into two sets: a training set, and 
then a test set.

Figure 2: The data for our numerical example

For each t within the test period, we have considered the 
vector of T observations for the past T days; 

awalee notes 6

then computing the probabilities to observe this se-
quence for our three HMM, we detect the most likely trend 
at t. The results are shown in the following graph:

Figure 3: The detection of trend for the test period

The bottom line, with value 100, accounts for a negative 
trend; the intermediary line, with value 105, accounts for 
a stable trend; the top line, with value 110, accounts for 
a positive trend. As we can see, the negative trends, es-
pecially the one from date t = 100 to t = 140, are rather 
well detected. The stable periods are the most difficult to 
detect, since they often lie between two trends; it would 
have been easier if we had had longer stable periods. 
The positive trends also appear on our graph, especially 
around the date t = 180 and after t = 190.
If those results seem encouraging, we also see that the 
model can fail to detect a specific trend, for instance the 
positive trend around t = 120. Such a failure is easily un-
derstandable: as we have mentioned previously, this mo-
del is a pedagogical one. Of course when dealing with true 
financial data, it should be strengthened to make more 
efficient estimations. We mention here two trails among 
many: how to optimally choose the meta-parameters? 
How to replace the finite set of observations by a conti-
nuous one, so as to have a less naive view of the market?

The study of financial time series is of the greatest im-
portance in finance. The traditional methods have been 
well-known for many years and come mainly from the 
field of econometrics. Nonetheless, those econometric 
approaches face many difficulties, and that is why we are 
interested in proposing a new framework so as to study 
financial time series with Machine Learning techniques, 
especially Hidden Markov Models.
Those models are derived from classic Markov chains, 
but aim at differentiating the states, which are no longer 
visible, and the observations, which are visible but also 
an imperfect representation of the hidden state. HMM 
form a theory that has been known for many years, for 
instance due to its application for handwriting recogni-
tion, and thus some efficient algorithms exist to solve the 
three problems which are ubiquitous within this theory. 



The main result is the Baum-Welch algorithm, which is 
used to optimize the components of a HMM so as to make 
the latter more representative of a series of observations.

We have presented a first approach of how to use HMM 
when it comes to financial time series. We have tried to 
keep it as simple as possible, especially for pedagogical 
purposes, but it is possible to go further. Some 
improvements are possible, for instance to replace the 
finite set of observations by a continuous one.
Nonetheless, if we would like to go beyond financial 
time series, it is worth noticing that we can find other 
applications for HMM in the field of finance. For instance 
they can be used to tackle volatility and regime issues, and 
then be applied within a systematic strategy framework. 
HMM, like many other Machine Learning techniques, are 
now forming an expanding area in finance.

REFERENCES

[1] Stephen Taylor. Modelling Financial Times Series. Wor-
ld Scientific Pub Co Inc, 1986.

[2] Terence C. Mills and Raphael N. Markellos. The Econo-
metric Modelling of Financial TImes Series. Cambridge 
University Press, 2008.

[3] Gernot A. Fink. Markov Models for Pattern Recognition. 
Springer, 2007.

[4] B. S. Saritha and S. Hemanth. An efficient hidden mar-
kov model for offline handwritten numeral recognition. 
InterJRI Computer Science and Network- ing, page 9, jan 
2010.

7awalee notes

ABOUT US

Awalee est un cabinet de conseil indépendant 
spécialiste du secteur de la Finance, créé en 
2009 et qui compte plus de 80 collaborateurs.

Nous sommes en mesure à la fois d’adresser 
des sujets relatifs à l’expertise des métiers 
de la Finance (Consulting) et de conduire des 
projets d’organisation et de transformation 
(Advisory). Et nous le faisons grâce à la 
synergie agile de ces deux savoir-faire. 

Nos expertises s’exercent dans la conformité 
réglementaire, la finance quantitative, la 
fonction finance, la gouvernance des outils & 
systèmes, le management des risques et les 
marchés financiers. Au-delà de ce que nous 
faisons, il y a comment nous le faisons : viser 
l’excellence et repousser nos limites tout 
en cultivant la convivialité et en favorisant 
l’esprit d’équipe.

Nous sommes Awalee : nous sommes AWARE 
& AWESOME.

Awalee consulting
77 Boulevard Berthier
75017 Paris

www.awaleeconsulting.com

linkedin.com/awaleeconsulting


